Câu hỏi:

15/12/2025 15 Lưu

Cho hình lăng trụ đều \[ABC.A'B'C'\] có \[AB = \sqrt 3 \] và \[AA' = 1\]. Góc tạo bởi giữa đường thẳng \[AC'\] và \[\left( {ABC} \right)\] bằng

A. \({45^{\rm{o}}}\).     

B. \({60^{\rm{o}}}\).   
C. \({30^{\rm{o}}}\).   
D. \({75^{\rm{o}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình lăng trụ đều ABC.A'B'C' có AB = căn bậc hai của  3  và AA' = 1. Góc tạo bởi giữa đường thẳng AC' và (ABC) bằng (ảnh 1)

Ta có \[\widehat {\left( {AC',\left( {ABC} \right)} \right) = }\]\[\widehat {\left( {AC',AC} \right) = }\]\[\widehat {CAC'}\], \[\tan \widehat {C'AC} = \frac{{CC'}}{{AC}}\]\[ = \frac{1}{{\sqrt 3 }}\]\[ \Rightarrow \widehat {C'AC} = {30^{\rm{o}}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC). Biết SA = 2a và tam giác ABC vuông tại A có AB = 3a, AC = 4a. Tính thể tích khối chóp S.ABC theo a. (ảnh 1)

Ta có \({S_{ABC}} = \frac{1}{2}.3a.4a = 6{a^2}\); \[{V_{SABC}} = \frac{1}{3}.SA.{S_{ABC}} = \frac{1}{3}.2a.6{a^2} = 4{a^3}\].

Lời giải

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP