Câu hỏi:

15/12/2025 7 Lưu

Cho hình chóp \(S.ABCD\) có \(SC = x\) \(\left( {0 < x < \sqrt 3 } \right)\), các cạnh còn lại đều bằng \(1\) (tham khảo hình vẽ). Biết rằng thể tích khối chóp \(S.ABCD\) lớn nhất khi và chỉ khi \(x = \frac{{\sqrt a }}{b}\) \(\left( {a,b \in {\mathbb{Z}^ + }} \right)\). Các mệnh đề sau đúng hay sai?
Cho hình chóp S.ABCD có SC = x (0 < x < căn bậc hai 3 ), các cạnh còn lại đều bằng 1 (tham khảo hình vẽ). Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi x = căn bậc hai của a /b (a,b thuộc Z^+ ). Các mệnh đề sau đúng hay sai? (ảnh 1)

a) \({a^2} - 2b < 30\).

Đúng
Sai
b) \({a^2} - 8b = 20\).
Đúng
Sai
c) \({b^2} - a <  - 2\).
Đúng
Sai
d) \(2a - 3{b^2} =  - 1\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Sai

d) Sai

Cho hình chóp S.ABCD có SC = x (0 < x < căn bậc hai 3 ), các cạnh còn lại đều bằng 1 (tham khảo hình vẽ). Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi x = căn bậc hai của a /b (a,b thuộc Z^+ ). Các mệnh đề sau đúng hay sai? (ảnh 2)

Gọi \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\), vì \(SA = SB = SD\) nên \(H \in AO\) với \(O\) là trung điểm của \(BD\)

Ta xét hai tam giác \(SBD\) và \(ABD\) có cạnh \(BD\) chung, \(SB = AB\), \(SD = AD\) nên \(\Delta SBD = \Delta ABD\) suy ra \(AO = SO = OC\) do đó \(\Delta SAC\) vuông tại \(S\).

Ta có \(AO = \frac{1}{2}AC = \frac{1}{2}\sqrt {1 + {x^2}} \) \( \Rightarrow BO = \frac{{\sqrt {3 - {x^2}} }}{2}\)\( \Rightarrow {S_{ABCD}} = \frac{{\sqrt {\left( {1 + {x^2}} \right)\left( {3 - {x^2}} \right)} }}{2}\) \(\left( {0 < x < \sqrt 3 } \right)\)

Mặt khác \(SH = \frac{{SA.SC}}{{\sqrt {S{A^2} + S{C^2}} }}\)\( = \frac{x}{{\sqrt {1 + {x^2}} }}\)

Vậy \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}}\)\( = \frac{{\sqrt {{x^2}\left( {3 - {x^2}} \right)} }}{6} \le \frac{1}{4}\).

Thể tích khối chóp \(S.ABCD\) lớn nhất khi và chỉ khi\({x^2} = 3 - {x^2}\)\( \Leftrightarrow x = \frac{{\sqrt 6 }}{2}\).

Vậy \(\left\{ \begin{array}{l}a = 6\\b = 2\end{array} \right.\). Suy ra \({a^2} - 8b = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC). Biết SA = 2a và tam giác ABC vuông tại A có AB = 3a, AC = 4a. Tính thể tích khối chóp S.ABC theo a. (ảnh 1)

Ta có \({S_{ABC}} = \frac{1}{2}.3a.4a = 6{a^2}\); \[{V_{SABC}} = \frac{1}{3}.SA.{S_{ABC}} = \frac{1}{3}.2a.6{a^2} = 4{a^3}\].

Lời giải

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP