Câu hỏi:

15/12/2025 24 Lưu

Cho hình chóp \(S.ABCD\) có \(SC = x\) \(\left( {0 < x < \sqrt 3 } \right)\), các cạnh còn lại đều bằng \(1\) (tham khảo hình vẽ). Biết rằng thể tích khối chóp \(S.ABCD\) lớn nhất khi và chỉ khi \(x = \frac{{\sqrt a }}{b}\) \(\left( {a,b \in {\mathbb{Z}^ + }} \right)\). Các mệnh đề sau đúng hay sai?
Cho hình chóp S.ABCD có SC = x (0 < x < căn bậc hai 3 ), các cạnh còn lại đều bằng 1 (tham khảo hình vẽ). Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi x = căn bậc hai của a /b (a,b thuộc Z^+ ). Các mệnh đề sau đúng hay sai? (ảnh 1)

a) \({a^2} - 2b < 30\).

Đúng
Sai
b) \({a^2} - 8b = 20\).
Đúng
Sai
c) \({b^2} - a <  - 2\).
Đúng
Sai
d) \(2a - 3{b^2} =  - 1\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Sai

d) Sai

Cho hình chóp S.ABCD có SC = x (0 < x < căn bậc hai 3 ), các cạnh còn lại đều bằng 1 (tham khảo hình vẽ). Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi x = căn bậc hai của a /b (a,b thuộc Z^+ ). Các mệnh đề sau đúng hay sai? (ảnh 2)

Gọi \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\), vì \(SA = SB = SD\) nên \(H \in AO\) với \(O\) là trung điểm của \(BD\)

Ta xét hai tam giác \(SBD\) và \(ABD\) có cạnh \(BD\) chung, \(SB = AB\), \(SD = AD\) nên \(\Delta SBD = \Delta ABD\) suy ra \(AO = SO = OC\) do đó \(\Delta SAC\) vuông tại \(S\).

Ta có \(AO = \frac{1}{2}AC = \frac{1}{2}\sqrt {1 + {x^2}} \) \( \Rightarrow BO = \frac{{\sqrt {3 - {x^2}} }}{2}\)\( \Rightarrow {S_{ABCD}} = \frac{{\sqrt {\left( {1 + {x^2}} \right)\left( {3 - {x^2}} \right)} }}{2}\) \(\left( {0 < x < \sqrt 3 } \right)\)

Mặt khác \(SH = \frac{{SA.SC}}{{\sqrt {S{A^2} + S{C^2}} }}\)\( = \frac{x}{{\sqrt {1 + {x^2}} }}\)

Vậy \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}}\)\( = \frac{{\sqrt {{x^2}\left( {3 - {x^2}} \right)} }}{6} \le \frac{1}{4}\).

Thể tích khối chóp \(S.ABCD\) lớn nhất khi và chỉ khi\({x^2} = 3 - {x^2}\)\( \Leftrightarrow x = \frac{{\sqrt 6 }}{2}\).

Vậy \(\left\{ \begin{array}{l}a = 6\\b = 2\end{array} \right.\). Suy ra \({a^2} - 8b = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

Lời giải

Trả lời: \( \approx {25,7^0}\)

Lời giải

Cho hình lăng trụ đều ABC.A'B'C' có đáy cạnh a, góc giữa đường thẳng A'B và mặt phẳng ABC là 60 độ. Tính góc giữa đường thẳng C'A và mặt phẳng AA'B'B? (ảnh 1)

Kẻ \({C^\prime }I \bot {A^\prime }{B^\prime }\)

Ta có: \({C^\prime }I \bot {A^\prime }A \Rightarrow {C^\prime }I \bot \left( {A{A^\prime }{B^\prime }B} \right)\) tại \(I\) và \({C^\prime }A\) cắt mp\(\left( {A{A^\prime }{B^\prime }B} \right)\) tại \(A\).

\( \Rightarrow AI\) là hình chiếu của \({C^\prime }A\) trên mp\(\left( {A{A^\prime }{B^\prime }B} \right)\)

\( \Rightarrow \left( {{C^\prime }A,\left( {A{A^\prime }{B^\prime }B} \right)} \right) = \left( {{C^\prime }A,AI} \right) = \widehat {{C^\prime }AI}\)

Ta có: \({A^\prime }A = AB \cdot \tan {60^^\circ } = \sqrt 3 a\)

\(AI = \sqrt {{A^\prime }{A^2} + {A^\prime }{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta {C^\prime }AI\) vuông tại \(I:\tan \widehat {{C^\prime }AI} = \frac{{{C^\prime }I}}{{AI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt {13} a}}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {{C^\prime }AI} \approx {25,7^0}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP