Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a,SA \bot (ABC)\) và \(SB = a\sqrt 5 \). Gọi \(M\) là trung điểm \(BC\). Tính góc giữa đường thẳng \(SM\) và mặt phẳng \((SAC)\)?
Quảng cáo
Trả lời:
Trả lời: \( \approx {11,5^0}\)
Lời giải
Kẻ \(MH \bot AC\)
Ta có: \(MH \bot SA \Rightarrow MH \bot (SAC)\) tại \(H\) và \(SM\) cắt mp \((SAC)\) tại \(S\)
\( \Rightarrow SH\) là hình chiếu của \(SM\) trên mp \((SAC)\)
\( \Rightarrow (SM,(SAC)) = (SM,SH) = \widehat {MSH}\)
Ta có: \(HM = MC \cdot \sin {60^^\circ } = \frac{a}{2} \cdot \sin {60^^\circ } = \frac{{a\sqrt 3 }}{4}\);
\(HC = MC \cdot \cos {60^^\circ } = \frac{a}{4} \Rightarrow AH = AC - HC = a - \frac{a}{4} = \frac{{3a}}{4}\)
Ta có: \(SH = \sqrt {S{A^2} + A{H^2}} = \sqrt {{{(a\sqrt 5 )}^2} - {a^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}} = \frac{{\sqrt {73} }}{4}a\)
Xét \(\Delta SHM\) vuông tại \(H:\tan \widehat {MSH} = \frac{{HM}}{{SH}} = \frac{{\frac{{a\sqrt 3 }}{4}}}{{\frac{{\sqrt {73} a}}{4}}} = \frac{{\sqrt {219} }}{{73}} \Rightarrow \widehat {MSH} \approx {11,5^0}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{8}{{27}}\)
Lời giải
Xác suất chỉ xuất hiện mặt sấp là: \({\left( {\frac{2}{3}} \right)^3} = \frac{8}{{27}}\).
Câu 2
a) Phương trình có nghiệm dương nếu \[m > 0\].
b) Phương trình luôn có nghiệm với mọi \[m\].
c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Ta có \[{3^x} > 0\], \[\forall x \in \mathbb{R}\] nên \[{3^x} = m + 1\] có nghiệm \[ \Leftrightarrow m + 1 > 0 \Leftrightarrow m > - 1\].
Từ đó ta loại được đáp án b và d
Xét đáp án a, phương trình có nghiệm dương thì \[{3^x} > {3^0} = 1\] nên \[m + 1 > 1 \Leftrightarrow m > 0\].
Từ đó đáp án a đúng.
Xét đáp án c, ta thấy sai vì ở đây thiếu điều kiện \[m > - 1\].
Câu 3
A. \[\frac{1}{{\sqrt {14} }}\].
B. \[\frac{{\sqrt 2 }}{2}\].
C.\[\frac{{\sqrt 3 }}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( {SBC} \right) \bot \left( {SAB} \right)\).
B. \(\left( {SAB} \right) \bot \left( {ABCD} \right)\).
C. \(\left( {SAC} \right) \bot \left( {ABCD} \right)\).
D. \(\left( {SAC} \right) \bot \left( {SAD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(V = \frac{2}{3}{a^3}\).
B. \(V = 2{a^3}\).
C. \(V = \frac{1}{3}{a^3}\).
D. \(V = {a^3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
