Câu hỏi:

16/12/2025 7 Lưu

Số lượng tế bào còn sống trong khoảng thời gian \(t\) (phút) kể từ lúc tiến hành thí nghiệm được xác định bởi \(f(t) = a.{e^{bt}}\)trong đó \(a,\,b\) là các hằng số cho trước. Nếu bắt đầu một thí nghiệm sinh học với \(5.000.000\) tế bào thì có \(45\% \) các tế bào sẽ chết sau mỗi phút, hỏi sau ít nhất bao lâu nó sẽ còn ít hơn \(1.000\) tế bào?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \[14,245\] phút

Lời giải

Ta có \[f\left( t \right) = a.{e^{bt}}\]

Khi \[t = 0 \Rightarrow f\left( 0 \right) = 5.000.000\]\[ \Leftrightarrow a.{e^0} = 5.000.000 \Leftrightarrow a = 5.000.000\]

Khi \[t = 1 \Rightarrow f\left( 1 \right) = \frac{{100 - 45}}{{100}}a = \frac{{55}}{{100}}a\]\[ \Leftrightarrow a.{e^b} = \frac{{55}}{{100}}a \Leftrightarrow b = \ln \left( {\frac{{55}}{{100}}} \right)\].

Theo đề ta có bất phương trình \[f\left( t \right) = a.{e^{bt}} < 1000 \Leftrightarrow t > \frac{{\ln \left( {\frac{{1000}}{a}} \right)}}{b} \approx \]\[14,245\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{8}{{27}}\)

Lời giải

Xác suất chỉ xuất hiện mặt sấp là: \({\left( {\frac{2}{3}} \right)^3} = \frac{8}{{27}}\).

Lời giải

Trả lời: \( \approx {11,5^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SA vuông góc (ABC) và SB = a căn bậc hai của  5. Gọi M là trung điểm BC. Tính góc giữa đường thẳng SM và mặt phẳng (SAC)? (ảnh 1)

Kẻ \(MH \bot AC\)

Ta có: \(MH \bot SA \Rightarrow MH \bot (SAC)\) tại \(H\) và \(SM\) cắt mp \((SAC)\) tại \(S\)

\( \Rightarrow SH\) là hình chiếu của \(SM\) trên mp \((SAC)\)

\( \Rightarrow (SM,(SAC)) = (SM,SH) = \widehat {MSH}\)

Ta có: \(HM = MC \cdot \sin {60^^\circ } = \frac{a}{2} \cdot \sin {60^^\circ } = \frac{{a\sqrt 3 }}{4}\);

\(HC = MC \cdot \cos {60^^\circ } = \frac{a}{4} \Rightarrow AH = AC - HC = a - \frac{a}{4} = \frac{{3a}}{4}\)

Ta có: \(SH = \sqrt {S{A^2} + A{H^2}}  = \sqrt {{{(a\sqrt 5 )}^2} - {a^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}}  = \frac{{\sqrt {73} }}{4}a\)

Xét \(\Delta SHM\) vuông tại \(H:\tan \widehat {MSH} = \frac{{HM}}{{SH}} = \frac{{\frac{{a\sqrt 3 }}{4}}}{{\frac{{\sqrt {73} a}}{4}}} = \frac{{\sqrt {219} }}{{73}} \Rightarrow \widehat {MSH} \approx {11,5^0}\)

Câu 3

a) Phương trình có nghiệm dương nếu \[m > 0\].

Đúng
Sai

b) Phương trình luôn có nghiệm với mọi \[m\].   

Đúng
Sai

c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].      

Đúng
Sai
d) Phương trình có nghiệm với \[m \ge  - 1\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {SBC} \right) \bot \left( {SAB} \right)\).                                

B. \(\left( {SAB} \right) \bot \left( {ABCD} \right)\). 

C. \(\left( {SAC} \right) \bot \left( {ABCD} \right)\). 

D. \(\left( {SAC} \right) \bot \left( {SAD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP