Câu hỏi:

16/12/2025 40 Lưu

Cho hình chóp \(S.ABCD\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\), \(ABCD\) là hình thang vuông có đáy lớn \(AD\) gấp đôi đáy nhỏ \(BC\), đồng thời đường cao \(AB = BC = a\). Biết \(SA = a\sqrt 3 \), khi đó khoảng cách từ đỉnh \(B\) đến đường thẳng \(SC\) là.

A. \(a\sqrt {10} \). 
B. \(2a\).
C. \(\frac{{2a\sqrt 5 }}{5}\). 
D. \(\frac{{a\sqrt {10} }}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), ABCD là hình thang vuông có đáy lớn AD gấp đôi đáy nhỏ BC, đồng thời đường cao AB = BC = a. Biết SA = a căn bậc hai3, khi đó khoảng cách từ đỉnh B đến đường thẳng SC là. (ảnh 1)

Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot SB\)\( \Rightarrow \Delta SBC\) vuông tại \(B\).

Trong \(\Delta SBC\) dựng đường cao \(BH\)\( \Rightarrow \)\(d\left( {B;SC} \right) = BH\).

\(SB = 2a\); \(\frac{1}{{B{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{B{C^2}}}\)\( \Rightarrow BH = \frac{{BS.BC}}{{\sqrt {B{S^2} + B{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Trả lời: \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\)

Lời giải

Cho hình chóp S.ABCD có SA vuông góc (ABCD),SA = 2a,ABCD là hình vuông cạnh bằng a. Gọi O là tâm của ABCD.  Tính khoảng cách từ S đến DM với M là trung điểm OC. (ảnh 1)

Kẻ \(SK \bot DM\) tại \(K \Rightarrow d(S,DM) = SK\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{DM \bot SA}\\{DM \bot SK}\end{array} \Rightarrow DM \bot (SAK) \Rightarrow DM \bot AK} \right.\)

Ta có:

\( \Rightarrow \frac{{KA}}{{OD}} = \frac{{AM}}{{DM}} \Rightarrow KA = \frac{{AM \cdot OD}}{{DM}} = \frac{{\frac{3}{4}a\sqrt 2  \cdot a\sqrt 2 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}} }} = \frac{{3\sqrt {10} }}{5}a\)

Ta có: \(SK = \sqrt {S{A^2} + A{K^2}}  = \sqrt {{{(2a)}^2} + {{\left( {\frac{{3\sqrt {10} }}{5}a} \right)}^2}}  = \frac{{\sqrt {190} }}{5}a\)

Vậy \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\).

Câu 3

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
Đúng
Sai
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
Đúng
Sai
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\]. 
Đúng
Sai
d) \[d\left( {CD,SB} \right) = BD\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(286.408.856\) VNĐ.                                                                          

B. \(206.075.502\) đồng.

C. \(268.408.856\) đồng. 

D. \(260.075.502\) đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP