Câu hỏi:

16/12/2025 6 Lưu

Cho hàm số \(y =  - {x^3} + 3{x^2}\) có đồ thị \(\left( C \right)\). Gọi \({d_1}\), \({d_2}\) là tiếp tuyến của đồ thị \(\left( C \right)\) vuông góc với đường thẳng \(x - 9y + 2021 = 0\). Tính khoảng cách giữa hai đường thẳng \({d_1}\), \({d_2}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(\frac{{32}}{{\sqrt {82} }}\).

Lời giải

wGọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến \(d\) với đồ thị \(\left( C \right)\).

Ta có \(y' =  - 3{x^2} + 6x \Rightarrow \) hệ số góc tiếp tuyến tại điểm \(M\) là \(y'\left( {{x_0}} \right) =  - 3x_0^2 + 6{x_0}\).

Mà tiếp tuyến \(d\) vuông góc với đường thẳng \(\Delta :y = \frac{1}{9}x + \frac{{2021}}{9}\) nên \(y'\left( {{x_0}} \right) =  - \frac{1}{k} =  - 9\).

Khi đó \(3x_0^2 - 6{x_0} - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 1\end{array} \right.\).

wNhư vậy

Phương trình tiếp tuyến \({d_1}\) tại điểm \(M\left( {3;0} \right)\) là \[{d_1}:9x + y - 27 = 0\].

Phương trình tiếp tuyến \({d_2}\) tại điểm \(M\left( { - 1;4} \right)\) là \({d_2}:9x + y + 5 = 0\).

Mặt khác \({d_1}{\rm{//}}{d_2}\) nên \(d\left( {{d_1};{d_2}} \right) = \frac{{32}}{{\sqrt {82} }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), ABCD là hình thang vuông có đáy lớn AD gấp đôi đáy nhỏ BC, đồng thời đường cao AB = BC = a. Biết SA = a căn bậc hai3, khi đó khoảng cách từ đỉnh B đến đường thẳng SC là. (ảnh 1)

Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot SB\)\( \Rightarrow \Delta SBC\) vuông tại \(B\).

Trong \(\Delta SBC\) dựng đường cao \(BH\)\( \Rightarrow \)\(d\left( {B;SC} \right) = BH\).

\(SB = 2a\); \(\frac{1}{{B{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{B{C^2}}}\)\( \Rightarrow BH = \frac{{BS.BC}}{{\sqrt {B{S^2} + B{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).

Câu 3

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
Đúng
Sai
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
Đúng
Sai
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\]. 
Đúng
Sai
d) \[d\left( {CD,SB} \right) = BD\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP