Câu hỏi:

16/12/2025 31 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(2a,SC \bot (ABCD)\) và \(SC = 3a\). Tính góc phẳng nhị diện \([B,SA,C]\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(t = {3^x}\) \(\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 3t + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 2\end{array} \right.\,\,\,\left( {tm} \right)\)

Với \(t = 1\) ta có \({3^x} = 1 \Leftrightarrow x = 0\)

Với \(t = 2\) ta có \({3^x} = 2 \Leftrightarrow x = {\log _3}2\)

Suy ra phương trình có hai nghiệm là \({x_1} = 0\) và \({x_2} = {\log _3}2\)

Vậy \(A = 2{x_1} + 3{x_2}\)\( = 2.0 + 3{\log _3}2\)\( = 3{\log _3}2\).

Câu 2

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
Đúng
Sai
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
Đúng
Sai
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\]. 
Đúng
Sai
d) \[d\left( {CD,SB} \right) = BD\].
Đúng
Sai

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

d: sai vì \(BD\) không vuông góc với \(CD\).

Cho hình chóp S.ABCD có SA vuông góc (ABCD) và đáy ABCD là hình vuông tâm O. Các mệnh đề sau đúng hay sai? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP