Câu hỏi:

17/12/2025 99 Lưu

Số nghiệm của phương trình \[{\log _2}\sqrt {x - 3}  + {\log _2}\sqrt {3x - 7}  = 2\] bằng

A. \[1\]. 

B. \[2\]. 

C. \[3\]. 

D. \[0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện xác định: \(x > 3\).

Phương trình đã cho tương: \({\log _2}\left( {\sqrt {x - 3} .\sqrt {3x - 7} } \right) = 2 \Leftrightarrow \sqrt {(x - 3)(3x - 7)}  = 4\)\[ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = \frac{1}{3}\,\,\,\,\,\,\left( L \right)\end{array} \right.\].

Vậy phương trình có một nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a. SA vuông góc với mặt phẳng đáy. SA = a căn bậc hai 3. Cosin của góc giữa SC và mặt đáy bằng: (ảnh 1)
 
Media VietJack

Câu 2

A. \(\left( {SAC} \right) \bot \left( {SMB} \right)\). 

B. \(\left( {SAC} \right) \bot \left( {SBD} \right)\).  

C. \(\left( {SBC} \right) \bot \left( {SMB} \right)\).    

D. \(\left( {SAB} \right) \bot \left( {SBD} \right)\).

Lời giải

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 1)

+ Ta có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 2).

+ Xét tam giác vuông \(ABM\) có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 3)

Xét tam giác vuông \(ACD\) có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 4). Ta có:

\(\cot \widehat {AIM} = \cot \left( {{{180}^0} - \left( {\widehat {AMB} + \widehat {CAD}} \right)} \right) =  - \cot \left( {\widehat {AMB} + \widehat {CAD}} \right)\) \[ =  - \frac{{1 - \tan \widehat {AMB}.\tan \widehat {CAD}}}{{\tan \widehat {AMB} + \tan \widehat {CAD}}} = 0\]

\( \Rightarrow \widehat {AIM} = {90^0}\) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 5)

Từ (1) và (2) suy ra: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 6)Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 7) nên Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 8)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"

Đúng
Sai

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)

Đúng
Sai

c) \(P(\bar B) = P\left( {\overline A } \right)\)

Đúng
Sai

d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{1}{3}\)

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP