Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA \bot (ABCD)\). Biết góc giữa \(SC\) và mặt phẳng \((ABCD)\) là \({60^^\circ }\). Tính góc phẳng nhị diện \([S,BD,C]\)?
Quảng cáo
Trả lời:
Đáp án:
Trả lời: \(\widehat {SOC} = {106,1^0}\)
Lời giải
Ta có: \(SA \bot (ABCD)\) tại \(A\) và \(SC\) cắt mp \((ABCD)\) tại \(C\)
\( \Rightarrow AC\) là hình chiếu của trên mp \((ABCD)\)
\( \Rightarrow (SC,(ABCD)) = (SC,AC) = \widehat {SCA} = {60^^\circ }\)
Ta có: \( \Rightarrow SA = AC \cdot \tan {60^^\circ } = a\sqrt 2 \cdot \sqrt 3 = \sqrt 6 a\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot SA}\\{BD \bot AC}\end{array} \Rightarrow BD \bot (SAC)} \right.\)\(SC\)\(\Delta SAO\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBD) \cap (CBD) = BD}\\{{\mathop{\rm Trong}\nolimits} \,(CBD),CO \bot BD \Rightarrow [S,BD,C] = \widehat {SOC}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),SO \bot BD}\end{array}} \right.\)
Xét vuông tại \(A:\tan \widehat {SOA} = \frac{{SA}}{{AO}} = \frac{{a\sqrt 6 }}{{\frac{{a\sqrt 2 }}{2}}} = 2\sqrt 3 \Rightarrow \widehat {SOA} = {73,9^0}\)
\( \Rightarrow \widehat {SOC} = {106,1^0}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \({x_1} + {x_2} = 0\).
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Vì \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x}.{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 1\).Đặt \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} = t\),\(\left( {t > 0} \right)\) suy ra \({\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = \frac{1}{t}\)Phương trình trở thành: \[t + \frac{1}{t} = 4 \Leftrightarrow {t^2} - 4t + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2 + \sqrt 3 \\t = 2 - \sqrt 3 \end{array} \right.\].
\(t = 2 + \sqrt 3 \Rightarrow x = {x_1} = - 2\)
\(t = 2 - \sqrt 3 \Rightarrow x = {x_2} = 2\)
Vậy \({x_1} + {x_2} = 0\)
Lời giải
Trả lời: \(0,58\)
Lời giải
Rõ ràng việc Minh đi biển hay không hoàn toàn phụ thuộc vào thời tiết.
Ta có sơ đồ cây như sau:
Trong đó: \(N\) là biến cố "Trời nắng", \(M\) là biến cố “Trời mưa", \(B\) là biến cố "Đi biển”.
Xác suất Minh đi biển chơi là: \(0,8 \cdot 0,7 + 0,2 \cdot 0,1 = 0,58\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[2 - {\log _a}b\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[AD \bot SC\].
C. \[SA \bot BD\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.