Câu hỏi:

17/12/2025 6 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA \bot (ABCD)\). Biết góc giữa \(SC\) và mặt phẳng \((ABCD)\) là \({60^^\circ }\). Tính góc phẳng nhị diện \([S,BD,C]\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

\(\widehat {SOC} = {106,1^0}\)

Trả lời: \(\widehat {SOC} = {106,1^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a,SA vuông góc (ABCD). Biết góc giữa SC và mặt phẳng (ABCD) là 60 độ. Tính góc phẳng nhị diện [S,BD,C]? (ảnh 1)

Ta có: \(SA \bot (ABCD)\) tại \(A\) và \(SC\) cắt mp \((ABCD)\) tại \(C\)

\( \Rightarrow AC\) là hình chiếu của  trên mp \((ABCD)\)

\( \Rightarrow (SC,(ABCD)) = (SC,AC) = \widehat {SCA} = {60^^\circ }\)

Ta có: \( \Rightarrow SA = AC \cdot \tan {60^^\circ } = a\sqrt 2  \cdot \sqrt 3  = \sqrt 6 a\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot SA}\\{BD \bot AC}\end{array} \Rightarrow BD \bot (SAC)} \right.\)\(SC\)\(\Delta SAO\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBD) \cap (CBD) = BD}\\{{\mathop{\rm Trong}\nolimits} \,(CBD),CO \bot BD \Rightarrow [S,BD,C] = \widehat {SOC}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),SO \bot BD}\end{array}} \right.\)

Xét  vuông tại \(A:\tan \widehat {SOA} = \frac{{SA}}{{AO}} = \frac{{a\sqrt 6 }}{{\frac{{a\sqrt 2 }}{2}}} = 2\sqrt 3  \Rightarrow \widehat {SOA} = {73,9^0}\)

\( \Rightarrow \widehat {SOC} = {106,1^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Sai

Vì \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x}.{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 1\).Đặt \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} = t\),\(\left( {t > 0} \right)\) suy ra \({\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = \frac{1}{t}\)Phương trình trở thành: \[t + \frac{1}{t} = 4 \Leftrightarrow {t^2} - 4t + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2 + \sqrt 3 \\t = 2 - \sqrt 3 \end{array} \right.\].

\(t = 2 + \sqrt 3  \Rightarrow x = {x_1} =  - 2\)

\(t = 2 - \sqrt 3  \Rightarrow x = {x_2} = 2\)

Vậy \({x_1} + {x_2} = 0\)

Lời giải

Trả lời: \(0,58\)

Lời giải

Rõ ràng việc Minh đi biển hay không hoàn toàn phụ thuộc vào thời tiết.

Ta có sơ đồ cây như sau:

Ở thành phố X, xác suất để một ngày là nắng ráo là 0,8. Nếu trời nắng thì xác suất để Minh đi ra biển chơi là 0,7. Nếu trời mưa thì xác suất để Minh ra biển chơi là 0,1. Xác định xác suất mà Minh sẽ đi biển chơi vào một ngày bất kì. (ảnh 1)

Trong đó: \(N\) là biến cố "Trời nắng", \(M\) là biến cố “Trời mưa", \(B\) là biến cố "Đi biển”.

Xác suất Minh đi biển chơi là: \(0,8 \cdot 0,7 + 0,2 \cdot 0,1 = 0,58\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP