Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = 2a\), \(AD = a\). \(SA\) vuông góc với mặt phẳng đáy. \(SA = a\sqrt 3 \). Cosin của góc giữa \(SC\) và mặt đáy bằng:
A. \(\frac{{\sqrt 5 }}{4}\).
C. \(\frac{{\sqrt 6 }}{4}\).
Quảng cáo
Trả lời:

Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\left( {SAC} \right) \bot \left( {SMB} \right)\).
C. \(\left( {SBC} \right) \bot \left( {SMB} \right)\).
Lời giải
Chọn A
+ Ta có:
.
+ Xét tam giác vuông \(ABM\) có: 
Xét tam giác vuông \(ACD\) có:
. Ta có:
\(\cot \widehat {AIM} = \cot \left( {{{180}^0} - \left( {\widehat {AMB} + \widehat {CAD}} \right)} \right) = - \cot \left( {\widehat {AMB} + \widehat {CAD}} \right)\) \[ = - \frac{{1 - \tan \widehat {AMB}.\tan \widehat {CAD}}}{{\tan \widehat {AMB} + \tan \widehat {CAD}}} = 0\]
\( \Rightarrow \widehat {AIM} = {90^0}\) ![]()
Từ (1) và (2) suy ra:
mà
nên ![]()
Lời giải
Trả lời: \(\widehat {SOC} = {106,1^0}\)
Lời giải
Ta có: \(SA \bot (ABCD)\) tại \(A\) và \(SC\) cắt mp \((ABCD)\) tại \(C\)
\( \Rightarrow AC\) là hình chiếu của trên mp \((ABCD)\)
\( \Rightarrow (SC,(ABCD)) = (SC,AC) = \widehat {SCA} = {60^^\circ }\)
Ta có: \( \Rightarrow SA = AC \cdot \tan {60^^\circ } = a\sqrt 2 \cdot \sqrt 3 = \sqrt 6 a\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot SA}\\{BD \bot AC}\end{array} \Rightarrow BD \bot (SAC)} \right.\)\(SC\)\(\Delta SAO\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBD) \cap (CBD) = BD}\\{{\mathop{\rm Trong}\nolimits} \,(CBD),CO \bot BD \Rightarrow [S,BD,C] = \widehat {SOC}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),SO \bot BD}\end{array}} \right.\)
Xét vuông tại \(A:\tan \widehat {SOA} = \frac{{SA}}{{AO}} = \frac{{a\sqrt 6 }}{{\frac{{a\sqrt 2 }}{2}}} = 2\sqrt 3 \Rightarrow \widehat {SOA} = {73,9^0}\)
\( \Rightarrow \widehat {SOC} = {106,1^0}\)
Câu 3
a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"
b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)
c) \(P(\bar B) = P\left( {\overline A } \right)\)
d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[AD \bot SC\].
C. \[SA \bot BD\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[1\].
C. \[3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.