Trong năm học 2022–2023, lớp 10A đạt được điểm số các đợt thi đua nề nếp như sau:

Tìm khoảng biến thiên của mẫu số liệu trên.
Trong năm học 2022–2023, lớp 10A đạt được điểm số các đợt thi đua nề nếp như sau:

Tìm khoảng biến thiên của mẫu số liệu trên.
Quảng cáo
Trả lời:
Giá trị lớn nhất trong mẫu số liệu là \(50\)
Giá trị nhỏ nhất trong mẫu số liệu là 42
Khoảng biến thiên của mẫu số liệu là \(R = 50 - 42 = 8\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \[I\] là tâm của đường tròn, ta có tọa độ tâm \(I\left( {3;4} \right)\).
Theo đề ra ta có tứ giác \[IMPN\] là hình vuông, nên đường thẳng \[MN\] nhận \(\overrightarrow {IP} = \left( { - 6; - 6} \right)\) làm véctơ pháp tuyến. Đồng thời đường thẳng \[MN\] đi qua trung điểm \(K\left( {0;1} \right)\) của \[IP\].
Vậy phương trình đường thẳng MN: \(1.\left( {x - 0} \right) + 1.\left( {y - 1} \right) = 0\) hay \(x + y - 1 = 0 \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 1\end{array} \right.\).
Khi đó \(T = a + 2b = 1 + 2.1 = 3\).
Lời giải
Từ \(3\) điểm không thẳng hàng ta lập được một tam giác
Vậy số tam giác được thành lập có \[3\] đỉnh lấy từ \(10\) điểm thuộc tập hợp \[S\] là \(C_{10}^3 = 120\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.