Một lớp học có \(30\) học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên \(3\) học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được \(2\) nam và \(1\) nữ là \(\frac{{12}}{{29}}\). Tính số học sinh nữ của lớp.
Một lớp học có \(30\) học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên \(3\) học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được \(2\) nam và \(1\) nữ là \(\frac{{12}}{{29}}\). Tính số học sinh nữ của lớp.
Quảng cáo
Trả lời:
Gọi số học sinh nữ của lớp là \(n\,\,\left( {n \in {{\rm N}^*},n \le 28} \right)\). Suy ra số học sinh nam là \(30 - n\).
Không gian mẫu là chọn bất kì \(3\)học sinh từ \(30\) học sinh.
Suy ra số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{30}^3\).
Gọi \(A\) là biến cố Chọn được \(2\) học sinh nam và \(1\) học sinh nữ .
Chọn \(2\) nam trong \(30 - n\) nam, có\(C_{30 - n}^2\) cách.
Chọn \(1\) nữ trong \(n\) nữ, có \(C_n^1\) cách.
Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_{30 - n}^2.C_n^1\).
Do đó xác suất của biến cố\(A\) là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}}\).
Theo giả thiết, ta có \(P\left( A \right) = \frac{{12}}{{29}} \Leftrightarrow \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}} = \frac{{12}}{{29}} \Rightarrow n = 14\).
Vậy số học sinh nữ của lớp là \(14\) học sinh.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đúng: Theo qui tắc nhân có \[5.5 = 25\] số có hai chữ số.
b) Sai: Gọi số có 3 chữ số khác nhau là \(\overline {abc} \).
Chọn \(a\) có 5 cách.
Chọn \(b\) có 4 cách.
Chọn \(c\) có 3 cách.
Suy ra có \[5.4.3 = 60\] số có ba chữ số khác nhau.
c) Đúng: Gọi số chẵn có ba chữ số khác nhau là \(\overline {abc} \).
Chọn \(c\) có 2 cách.
Chọn \(a\) có 4 cách.
Chọn \(b\) có 3 cách.
Suy ra có \[2.4.3 = 24\] số chẵn có ba chữ số khác nhau.
d) Sai: Gọi số lẻ có ba chữ số khác nhau là \(\overline {abc} \).
Chọn \(c\) có 3 cách.
Chọn \(a\) có 4 cách.
Chọn \(b\) có 3 cách.
Suy ra có \[3.4.3 = 36\] số lẻ có ba chữ số khác nhau.
Câu 2
Lời giải
a) Đúng: Số trung bình là \(\overline x = \frac{{575 + 454 + 400 + 325 + 351 + 333 + 412}}{7} \approx 407,142857\)
b) Sai: Sắp xếp số liệu theo thứ tự không giảm \(325\,\,\,333\,\,\,351\,\,\,400\,\,\,412\;\;454\;\;575\). Trung vị của mẫu số liệu là \({M_e} = 400\)
c) Sai: Ngày 1 không là mốt nên mệnh đề sai.
d) Sai: Nếu ngày 6 có 400 lượt khách thì mốt là 400 mà không phải là ngày 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

