Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Xét phép thử chọn ngẫu nhiên 3 viên bi. Hãy xác định tính đúng - sai của các khẳng định sau:
Quảng cáo
Trả lời:
a) Đúng: Không gian mẫu của phép thử là \(n(\Omega ) = C_{18}^3 = 816\).
b) Sai: Gọi \(A\) là biến cố chọn được 3 viên bi đỏ.
Chọn 3 biên bi đỏ trong 6 viên bi đỏ, có \(C_6^3 = 20\)
Xác suất của biến cố \(A\) là: \[P(A) = \frac{{20}}{{816}} = \frac{5}{{204}}\].
c) Đúng: Gọi \(B\) là biến cố chọn được 3 viên bi gồm 3 màu.
Chọn được 3 viên bi gồm 3 màu, có \(C_5^1.C_6^1.C_7^1 = 210\).
Xác suất của biến cố \(B\) là: \[P(B) = \frac{{210}}{{816}} = \frac{{35}}{{136}}\].
d) Đúng: Gọi \(C\) là biến cố chọn được nhiều nhất 2 viên bi xanh.
Trường hợp 1: Chọn 2 bi xanh, 1 bi trong 6 bi đỏ và 7 bi vàng, có \(C_5^2.C_{13}^1 = 130\)
Trường hợp 2: Chọn 1 bi xanh, 2 bi trong 6 bi đỏ và 7 bi vàng, có \(C_5^1.C_{13}^2 = 390\)
Trường hợp 3: Chọn 0 bi xanh, 3 bi trong 6 bi đỏ và 7 bi vàng, có \(C_{13}^3 = 286\)
Suy ra \(n\left( C \right) = C_5^2.C_{13}^1 + C_5^1.C_{13}^2 + C_{13}^3 = 806\)
Xác suất của biến cố \(C\) là: \[P\left( C \right) = \frac{{806}}{{816}} = \frac{{403}}{{408}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Nếu cửa hàng bán một cuốn sách giá \(80\) nghìn đồng thì mỗi tháng khách hàng sẽ mua \(150 - 80 = 70\) cuốn sách.
Gọi \(T\left( x \right)\) là số tiền lãi của cửa hàng mỗi tháng
Ta có \(T\left( x \right) = \left( {150 - x} \right)\left( {x - 50} \right) = - {x^2} + 200x - 7500\).
Đồ thị \(T\left( x \right)\) là một parabol có đỉnh \(I\left( {100;2500} \right)\)
Do đó lợi nhuận cao nhất khi bán 1 cuốn sách với giá \(100\)(nghìn đồng).
Khi \(T\left( x \right) = 2,1\) triệu thì ta có \( - {x^2} + 200x - 7500 = 2100 \Leftrightarrow \left[ \begin{array}{l}x = 120\\x = 80\end{array} \right.\).
Cửa hàng sẽ đạt lợi nhuận \(2,1\) triệu đồng mỗi tháng nếu mỗi tháng khách hàng mua \(150 - 80 = 70\) cuốn sách hoặc \(150 - 120 = 30\) cuốn sách.
a) Sai: Theo ước tính, nếu cửa hàng bán một cuốn sách giá \(80\) nghìn đồng thì mỗi tháng khách hàng sẽ mua \(70\) cuốn sách.
b) Đúng: Số tiền lãi của cửa hàng mỗi tháng được tính bằng công thức \(T\left( x \right) = - {x^2} + 200x - 7500\)
c) Sai: Cửa hàng sẽ đạt lợi nhuận \(2,1\) triệu đồng mỗi tháng nếu mỗi tháng khách hàng mua \(70\) cuốn sách hoặc \(30\) cuốn sách.
d) Đúng: Nếu cửa hàng bán một cuốn sách với giá \(100\) nghìn đồng thì sẽ có lợi nhuận cao nhất.
Lời giải
Ta có:

Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right)\): \(y = a{x^2} + bx + c\) với \(a < 0\).
Do parabol \(\left( P \right)\) đối xứng qua trục tung nên có trục đối xứng \(x = 0 \Rightarrow - \frac{b}{{2a}} = 0 \Leftrightarrow b = 0\).
Chiều cao của cổng parabol là \(4{\rm{m}}\) nên tọa độ đỉnh của \(\left( P \right)\) là \(G\left( {0;4} \right)\).
Thế vào \(\left( P \right)\) ta được:\(4 = a{.0^2} + b.0 + c\, \Rightarrow c = 4\)\( \Rightarrow \left( P \right)\): \(y = a{x^2} + 4\)
Kích thước cửa ở giữa là \(3{\rm{m}} \times 4{\rm{m}}\) nên \(E\left( {2;3} \right) \in \left( P \right)\) \( \Rightarrow 3 = a{.2^2} + 4 \Leftrightarrow a = - \frac{1}{4}\).
Vậy \(\left( P \right)\): \(y = - \frac{1}{4}{x^2} + 4\).
\(A\) và \(B\) là giao điểm của \(\left( P \right)\) và trục hoành.
Phương trình hoành độ giao điểm của \(\left( P \right)\) và trục hoành:
\( - \frac{1}{4}{x^2} + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\) nên \(A\left( { - 4;0} \right)\), \(B\left( {4;0} \right)\) hay \(AB = 8\)\[{\rm{m}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

