Câu hỏi:

18/12/2025 13 Lưu

Mái vòm của một đường hầm có hình bán elip. Biết elip có tiêu cự \(8m\) và tổng các khoảng cách từ mỗi điểm trên elip đến hai tiêu cự bằng \(10m\). Gọi \(h\) là chiều cao của mái vòm tại điểm cách tâm của đường hầm \(2m\). Khi đó \(h = \frac{{a\sqrt b }}{c}\) với \(a,b,c\) là các số nguyên dương thì giá trị của biểu thức \(T = a + b + 2c\) bằng bao nhiêu?
Vì tổng các khoảng cách từ (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\)

Elip có tiêu cự \(8m\) nên \(2c = 8 \Rightarrow c = 4\)

Vì tổng các khoảng cách từ mỗi điểm trên elip đến hai tiêu cự bằng \(10m\) nên \(2a = 10 \Rightarrow a = 5\)

Do đó \({b^2} = {a^2} - {c^2} = {5^2} - {4^2} = 9 \Rightarrow b = 3\)

Phương trình của elip là \(\frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{3^2}}} = 1\),

Khi đó: \(\frac{{{2^2}}}{{{5^2}}} + \frac{{{h^2}}}{{{3^2}}} = 1 \Rightarrow h = \frac{{3\sqrt {21} }}{5} \Rightarrow \left\{ \begin{array}{l}a = 3\\b = 21\\c = 5\end{array} \right. \Rightarrow T = 3 + 21 + 2.5 = 34\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Theo ước tính, nếu cửa hàng bán một cuốn sách giá \(80\) nghìn đồng thì mỗi tháng khách hàng sẽ mua \(150\) cuốn sách.
Đúng
Sai
b) Số tiền lãi của cửa hàng mỗi tháng được tính bằng công thức \(T\left( x \right) = - {x^2} + 200x - 7500\).
Đúng
Sai
c) Cửa hàng sẽ đạt lợi nhuận \(2,1\) triệu đồng mỗi tháng nếu mỗi tháng khách hàng mua \(80\) cuốn sách.
Đúng
Sai
d) Nếu cửa hàng bán một cuốn sách với giá \(100\) nghìn đồng thì sẽ có lợi nhuận cao nhất.
Đúng
Sai

Lời giải

Nếu cửa hàng bán một cuốn sách giá \(80\) nghìn đồng thì mỗi tháng khách hàng sẽ mua \(150 - 80 = 70\) cuốn sách.

Gọi \(T\left( x \right)\) là số tiền lãi của cửa hàng mỗi tháng

Ta có \(T\left( x \right) = \left( {150 - x} \right)\left( {x - 50} \right) =  - {x^2} + 200x - 7500\).

Đồ thị \(T\left( x \right)\) là một parabol có đỉnh \(I\left( {100;2500} \right)\)

Do đó lợi nhuận cao nhất khi bán 1 cuốn sách với giá \(100\)(nghìn đồng).

Khi \(T\left( x \right) = 2,1\) triệu thì ta có \( - {x^2} + 200x - 7500 = 2100 \Leftrightarrow \left[ \begin{array}{l}x = 120\\x = 80\end{array} \right.\).

Cửa hàng sẽ đạt lợi nhuận \(2,1\) triệu đồng mỗi tháng nếu mỗi tháng khách hàng mua \(150 - 80 = 70\) cuốn sách hoặc \(150 - 120 = 30\) cuốn sách.

a) Sai: Theo ước tính, nếu cửa hàng bán một cuốn sách giá \(80\) nghìn đồng thì mỗi tháng khách hàng sẽ mua \(70\) cuốn sách.

b) Đúng: Số tiền lãi của cửa hàng mỗi tháng được tính bằng công thức \(T\left( x \right) =  - {x^2} + 200x - 7500\)

c) Sai: Cửa hàng sẽ đạt lợi nhuận \(2,1\) triệu đồng mỗi tháng nếu mỗi tháng khách hàng mua \(70\) cuốn sách hoặc \(30\) cuốn sách.

d) Đúng: Nếu cửa hàng bán một cuốn sách với giá \(100\) nghìn đồng thì sẽ có lợi nhuận cao nhất.

Lời giải

Ta có:

a) Đúng: Không gian mẫu của phép t (ảnh 2)

Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right)\): \(y = a{x^2} + bx + c\) với \(a < 0\).

Do parabol \(\left( P \right)\) đối xứng qua trục tung nên có trục đối xứng \(x = 0 \Rightarrow  - \frac{b}{{2a}} = 0 \Leftrightarrow b = 0\).

Chiều cao của cổng parabol là \(4{\rm{m}}\) nên tọa độ đỉnh của \(\left( P \right)\) là \(G\left( {0;4} \right)\).

Thế vào \(\left( P \right)\) ta được:\(4 = a{.0^2} + b.0 + c\, \Rightarrow c = 4\)\( \Rightarrow \left( P \right)\): \(y = a{x^2} + 4\)

Kích thước cửa ở giữa là \(3{\rm{m}} \times 4{\rm{m}}\) nên \(E\left( {2;3} \right) \in \left( P \right)\) \( \Rightarrow 3 = a{.2^2} + 4 \Leftrightarrow a =  - \frac{1}{4}\).

Vậy \(\left( P \right)\): \(y =  - \frac{1}{4}{x^2} + 4\).

\(A\) và \(B\) là giao điểm của \(\left( P \right)\) và trục hoành.

Phương trình hoành độ giao điểm của \(\left( P \right)\) và trục hoành:

\( - \frac{1}{4}{x^2} + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - 4\end{array} \right.\) nên \(A\left( { - 4;0} \right)\), \(B\left( {4;0} \right)\) hay \(AB = 8\)\[{\rm{m}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ X \right\}\).                              
B. \(\left\{ {X;\,T;\,\,H} \right\}\).                             
C. \(\left\{ H \right\}\).               
D. \(\left\{ T \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP