Trong mặt phẳng tọa độ, một tín hiệu âm thanh phát đi từ một vị trí \(I\left( {x;y} \right)\) và được ba thiết bị ghi tín hiệu tại ba vị trí \(O\left( {0;0} \right),A\left( {1;0} \right),B\left( {1;3} \right)\) nhận được cùng một thời điểm. Tính \(x + y\).
Trong mặt phẳng tọa độ, một tín hiệu âm thanh phát đi từ một vị trí \(I\left( {x;y} \right)\) và được ba thiết bị ghi tín hiệu tại ba vị trí \(O\left( {0;0} \right),A\left( {1;0} \right),B\left( {1;3} \right)\) nhận được cùng một thời điểm. Tính \(x + y\).
Quảng cáo
Trả lời:
Đáp án:
Vì một tín hiệu âm thanh phát đi từ một vị trí \(I\left( {x;y} \right)\) và được ba thiết bị ghi tín hiệu tại ba vị trí \(O\left( {0;0} \right),A\left( {1;0} \right),B\left( {1;3} \right)\) nhận được cùng một thời điểm nên \(IO = IA = IB\).
Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l}{x^2} + {y^2} = {\left( {x - 1} \right)^2} + {y^2}\\{\left( {x - 1} \right)^2} + {y^2} = {\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 2x + 1 = 0\\ - 6y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\\y = \frac{3}{2}\end{array} \right.\).
Vậy \(x + y = \frac{1}{2} + \frac{3}{2} = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \(\left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CB} } \right) = \widehat {BCD} = 180^\circ - \widehat {ACB} = 180^\circ - 45^\circ = 135^\circ \). Chọn A.

Câu 2
a) \(\overrightarrow {AB} = \left( {2;3} \right)\).
b) \(AC = 2\sqrt 6 \).
c) Tọa độ điểm \(C\) là \(C\left( {0; - 5} \right)\).
Lời giải
a) \(\overrightarrow {AB} = 2\overrightarrow i + 3\overrightarrow j \)\( \Rightarrow \overrightarrow {AB} = \left( {2;3} \right)\).
b) \(\overrightarrow {AC} = \sqrt {{{\left( { - 1} \right)}^2} + {5^2}} = \sqrt {26} \).
c) Gọi \(C\left( {x;y} \right)\). Ta có \(\overrightarrow {AC} = \left( {x - 1;y} \right)\).
Theo đề \(\overrightarrow {AC} = \left( { - 1;5} \right)\).
Do đó \(\left\{ \begin{array}{l}x - 1 = - 1\\y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 5\end{array} \right.\) \( \Rightarrow C\left( {0;5} \right)\).
d) Ta có \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \).
Do đó \(\overrightarrow {BC} = \left( { - 3;2} \right)\).
Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {BC} = 2 \cdot \left( { - 3} \right) + 3 \cdot 2 = 0\) nên tam giác \(ABC\) vuông tại \(B\).
Ta có \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{2^2} + {3^2}} = \sqrt {13} \); \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}} = \sqrt {13} \).
Diện tích tam giác \(ABC\) là \({S_{ABC}} = \frac{1}{2}AB \cdot BC = \frac{{13}}{2} = 6,5\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(\overrightarrow {BD} - \overrightarrow {BC} = \overrightarrow {BA} \).
b) \(\overrightarrow {AD} = 2\overrightarrow {BD} - \frac{1}{2}\overrightarrow {BE} \).
c) \(\overrightarrow {BE} = \frac{1}{2}\overrightarrow {BA} + \frac{1}{2}\overrightarrow {BC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.