Cho tam giác \(ABC\) có \(CA > CB\) và nội tiếp đường tròn tâm \(O\) đường kính \(AB.\) Các tiếp tuyến với đường tròn \(\left( O \right)\) tại \(A\) và \(C\) cắt nhau tại \(M.\) Gọi \(H\) là giao điểm của \(MO\) và \(AC.\)
1) Chứng minh rằng tứ giác \(OCMA\) nội tiếp và \(HA = HC.\)
2) Vẽ \(CK\) vuông góc với \(AB\,\,\left( {K \in AB} \right)\) và \(HE\) vuông góc với \(CK\,\,\left( {E \in CK} \right).\) Chứng minh rằng \(HE \cdot CM = HM \cdot CH\) và tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC.\)
3) Chứng minh rằng ba điểm \(M,\,\,E,\,\,B\) thẳng hàng.
Cho tam giác \(ABC\) có \(CA > CB\) và nội tiếp đường tròn tâm \(O\) đường kính \(AB.\) Các tiếp tuyến với đường tròn \(\left( O \right)\) tại \(A\) và \(C\) cắt nhau tại \(M.\) Gọi \(H\) là giao điểm của \(MO\) và \(AC.\)
1) Chứng minh rằng tứ giác \(OCMA\) nội tiếp và \(HA = HC.\)
2) Vẽ \(CK\) vuông góc với \(AB\,\,\left( {K \in AB} \right)\) và \(HE\) vuông góc với \(CK\,\,\left( {E \in CK} \right).\) Chứng minh rằng \(HE \cdot CM = HM \cdot CH\) và tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC.\)
3) Chứng minh rằng ba điểm \(M,\,\,E,\,\,B\) thẳng hàng.
Quảng cáo
Trả lời:
1) ⦁ Chứng minh tứ giác \(OCMA\) nội tiếp
Do \[MA,{\rm{ }}MC\] là tiếp tuyến của đường tròn \(\left( O \right)\) nên \(\widehat {MAO} = \widehat {MCO} = 90^\circ .\)
Do đó hai điểm \(A,\,\,C\) cùng nằm trên đường tròn đường kính \(MO.\)
Vậy tứ giác \[OCMA\] nội tiếp đường tròn đường kính \(MO.\)
⦁ Chứng minh \(HA = HC\)
Ta có \(MA = MC\) (tính chất hai tiếp tuyến cắt nhau) và \(OA = OC\) nên \(MO\) là đường trung trực của \[AC.\] Do đó \(MO \bot AC\) tại trung điểm \(H\) của \(AC.\)
Suy ra \(HA = HC.\)

2) ⦁ Chứng minh \(HE \cdot CM = HM \cdot CH\)
Xét \(\Delta ACK\) có \(HE\,{\rm{//}}\,AB\) (cùng vuông góc với \(CK)\) và \(H\) là trung điểm của \(AC\) nên \(HE\) là đường trung bình của tam giác, do đó \(HE = \frac{1}{2}AK\) hay \(AK = 2HE.\)
Do \[OCMA\] là tứ giác nội tiếp nên \(\widehat {OMC} = \widehat {OAC}\) (hai góc nội tiếp cùng chắn cung \(OC)\) hay \(\widehat {HMC} = \widehat {KAC}.\)
Xét \(\Delta MHC\) và \(\Delta AKC\) có: \[\widehat {MHC} = \widehat {AKC} = 90^\circ \] và \(\widehat {HMC} = \widehat {KAC}.\)
Do đó (g.g), suy ra \(\frac{{MH}}{{AK}} = \frac{{MC}}{{AC}}\) hay \[MH \cdot AC = MC \cdot AK.\]
Suy ra \[MH \cdot 2HC = MC \cdot 2HE\] hay \[MH \cdot HC = MC \cdot HE.\]
⦁ Chứng minh tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC\)
Ta có \(\widehat {CHO} = \widehat {OKC} = 90^\circ \) nên hai điểm \(H,\,\,K\) cùng nằm trên đường tròn đường kính \(OC\)
Vậy tứ giác \[HOKC\] nội tiếp đường tròn đường kính \(OC\) nên tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC.\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\widehat {MCF} = \widehat {CBF}.\)
Xét \(\Delta MCF\) và \(\Delta MBC\) có: \(\widehat {CMB}\) là góc chung, \(\widehat {MCF} = \widehat {MBC}\)
Do đó (g.g), suy ra \(\frac{{MC}}{{MB}} = \frac{{MF}}{{MC}},\) hay \(M{C^2} = MF \cdot MB.\)
Xét \(\Delta MCH\) vuông tại \(H,\) ta có \(\cos \widehat {CMH} = \frac{{MH}}{{MC}}.\)
Xét \(\Delta MCO\) vuông tại \(C,\) ta có \(\cos \widehat {CMO} = \frac{{MC}}{{MO}}.\)
Suy ra \(\frac{{MH}}{{MC}} = \frac{{MC}}{{MO}},\) hay \[M{C^2} = MH \cdot MO.\]
Do đó \(MH \cdot MO = MF \cdot MB\) nên \(\frac{{MH}}{{MB}} = \frac{{MF}}{{MO}}.\)
Xét \(\Delta MFH\) và \(\Delta MOB\) có: \(\widehat {OMB}\) là góc chung và \(\frac{{MH}}{{MB}} = \frac{{MF}}{{MO}}.\)
Do đó (c.g.c), suy ra \[\widehat {MHF} = \widehat {MBO}.\]
Mà \(\widehat {MHF} + \widehat {FHO} = 180^\circ \) (kề bù) nên \(\widehat {FHO} + \widehat {FBO} = 180^\circ .\)
|
Chứng minh bổ đề: Cho tứ giác \(ABCD\) có \(\widehat {ADC} + \widehat {ABC} = 180^\circ .\) Chứng minh tứ giác \(ABCD\) nội tiếp.
Xét \(\Delta AFD\) và \(\Delta CFK\) có: \(\widehat {AFD} = \widehat {CFK}\) (đối đỉnh) và \(\widehat {ADF} = \widehat {CKF}\) (chứng minh trên) Do đó suy ra \(\frac{{AF}}{{CF}} = \frac{{DF}}{{KF}}\) nên \(\frac{{AF}}{{DF}} = \frac{{CF}}{{KF}}.\) Xét \(\Delta DFK\) và \(\Delta AFC\) có: \(\frac{{AF}}{{DF}} = \frac{{CF}}{{KF}}\) và \[\widehat {DFK} = \widehat {AFC}\] (đối đỉnh) Do đó suy ra \(\widehat {FDK} = \widehat {FAC}.\,\,\,\left( 4 \right)\) ⦁ Ta có \(\widehat {ACK}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ACK} = 90^\circ ,\) do đó \(\Delta ACK\) vuông tại \(C,\) suy ra \(\widehat {FAC} + \widehat {AKC} = 90^\circ .\,\,\,\left( 5 \right)\) Từ \(\left( 3 \right),\,\,\left( 4 \right),\,\,\left( 5 \right)\) suy ra \(\widehat {ADC} + \widehat {FDK} = 90^\circ \) hay \(\widehat {ADK} = 90^\circ .\) Khi đó \(\Delta ADK\) vuông tại \(D\) nên điểm \(D\) nằm trên đường tròn đường kính \(AK.\) Suy ra tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) đường kính \(AK.\) |
Áp dụng bổ đề trên cho tứ giác \(OHFB\) có \(\widehat {FHO} + \widehat {FBO} = 180^\circ ,\) suy ra tứ giác \(OHFB\) nội tiếp đường tròn, do đó \(\widehat {HFB} + \widehat {HOB} = 180^\circ .\)
Mà \(\widehat {HOB} + \widehat {HOA} = 180^\circ \) nên \(\widehat {HFB} = \widehat {HOA}.\)
Lại có \(\widehat {HOA} = \widehat {ACK}\) (cùng phụ với \(\widehat {KAC})\) nên \(\widehat {HFB} = \widehat {ACK}\) hay \(\widehat {HFE'} = \widehat {HCE'}.\)
|
Chứng minh bổ đề: Cho tứ giác \(ABCD\) có \(\widehat {ACB} = \widehat {ADB}.\) Chứng minh tứ giác \(ABCD\) là tứ giác nội tiếp.
Xét \(\Delta AFD\) và \(\Delta BFK\) có: \(\widehat {AFD} = \widehat {BFK}\) (đối đỉnh) và \(\widehat {ADF} = \widehat {BKF}\) (chứng minh trên) Do đó suy ra \(\frac{{AF}}{{BF}} = \frac{{DF}}{{KF}}\) nên \(\frac{{AF}}{{DF}} = \frac{{BF}}{{KF}}.\) Xét \(\Delta DFK\) và \(\Delta AFB\) có: \(\frac{{AF}}{{DF}} = \frac{{BF}}{{KF}}\) và \[\widehat {DFK} = \widehat {AFB}\] (đối đỉnh) Do đó suy ra \(\widehat {FDK} = \widehat {FAB}.\,\,\,\left( 7 \right)\) ⦁ Ta có \(\widehat {ABK}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ABK} = 90^\circ ,\) do đó \(\Delta ABK\) vuông tại \(B,\) suy ra \(\widehat {FAB} + \widehat {AKB} = 90^\circ .\,\,\,\left( 8 \right)\) Từ \(\left( 6 \right),\,\,\left( 7 \right),\,\,\left( 8 \right)\) suy ra \(\widehat {ADB} + \widehat {FDK} = 90^\circ \) hay \(\widehat {ADK} = 90^\circ .\) Khi đó \(\Delta ADK\) vuông tại \(D\) nên điểm \(D\) nằm trên đường tròn đường kính \(AK.\) Suy ra tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) đường kính \(AK.\) |
Áp dụng bổ đề trên cho tứ giác \(HFCE'\) có \(\widehat {HFE'} = \widehat {HCE'},\) suy ra tứ giác \(HFCE'\) nội tiếp đường tròn, do đó \[\widehat {E'HC} = \widehat {E'FC}\] (hai góc nội tiếp cùng chắn cung \(E'C)\)
Mà \[\widehat {E'FC} = \widehat {BFC} = \widehat {BAC}\] (hai góc nội tiếp cùng chắn cung \(BC\) của đường tròn \(\left( O \right))\) nên \(\widehat {E'HC} = \widehat {BAC},\) lại có hai góc này ở vị trí đồng vị nên \(HE'{\rm{ // }}AB.\)
Xét \(\Delta ACK\) có \(HE'{\rm{ // }}AB\) và \(H\) là trung điểm \(AC\) nên \[HE'\] là đường trung bình của tam giác, do đó \(E'\) là trung điểm \(CK\)
Như vậy, điểm \(E\) và điểm \[E'\] trùng nhau.
Vậy ba điểm \(M,\,\,E,\,\,B\) thẳng hàng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) ⦁ Vẽ đồ thị hàm số \(y = - 2{x^2}.\)
|
Ta có bảng giá trị của \(y\) tương ứng với giá trị của \(x\) như sau:
Vẽ các điểm \(\left( { - 2; - 8} \right),\) \(\left( { - 1; - 2} \right),\) \(\left( {0;0} \right),\) \(\left( {1; - 2} \right),\) \(\left( {2; - 8} \right)\) thuộc đồ thị của hàm số \(y = - 2{x^2}\) trong mặt phẳng tọa độ \(Oxy.\) Vẽ đường parabol đi qua năm điểm trên, ta nhận được đồ thị hàm số \(y = - 2{x^2}\) (hình vẽ). ⦁ Vẽ đồ thị hàm số \(y = - 2x - 4.\) Cho \(x = 0\) ta có \(y = - 4.\) Đồ thị hàm số đi qua điểm \(A\left( {0; - 4} \right).\) |
Đồ thị của hàm số \(y = - 2{x^2}\) và \(y = - 2x - 4\) trên cùng một mặt phẳng tọa độ: ![]() |
Cho \(y = 0\) ta có \(x = - 2.\) Đồ thị hàm số đi qua điểm \(B\left( { - 2;0} \right).\)
Vẽ đường thẳng đi qua hai điểm \(A\left( {0; - 4} \right)\) và \(B\left( { - 2;0} \right)\) ta được đồ thị hàm số \(y = - 2x - 4\) (hình vẽ).
2) ⦁ Gọi \(\left( {{x_0};{y_0}} \right)\) là tọa độ giao điểm (nếu có) của hai đồ thị hàm số \(y = - 2x - 4\) và \(y = - 2{x^2},\) khi đó ta có: \({y_0} = - 2{x_0} - 4\) và \({y_0} = - 2x_0^2.\)
Suy ra \( - 2{x_0} - 4 = - 2x_0^2\) hay \(x_0^2 - {x_0} - 2 = 0.\)
Số giao điểm của hai đồ thị là số nghiệm của phương trình \(x_0^2 - {x_0} - 2 = 0.\,\,\,\left( 1 \right)\)
Ta có: \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên phương trình \(\left( 1 \right)\) có hai nghiệm là \({x_0} = - 1\) và \({x_0} = 2.\)
Với \({x_0} = - 1,\) ta có \({y_0} = - 2 \cdot \left( { - 1} \right) - 4 = - 2;\)
Với \({x_0} = 2,\) ta có \({y_0} = - 2 \cdot 2 - 4 = - 8.\)
Vậy tọa độ giao điểm \(C,\,\,D\) của hai đồ thị là: \(C\left( { - 1; - 2} \right)\) và \(D\left( {2; - 8} \right),\) hoặc \(C\left( {2; - 8} \right)\) và \(D\left( { - 1; - 2} \right).\)
⦁ Khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(CD\) chính là khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(y = - 2x - 4.\)
Gọi \(H\) là chân đường cao kẻ từ \(O\) xuống đường thẳng \[CD,\] ta có \(OH \bot CD.\)
Ta có \(A\left( {0; - 4} \right),\,\,B\left( { - 2;0} \right)\) suy ra \(OA = 4,\,\,OB = 2.\)
Xét \(\Delta OAB\) vuông tại \(O,\) có:
⦁ \(A{B^2} = O{A^2} + O{B^2}\) (định lí Pythagore)
Suy ra \(AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{4^2} + {2^2}} = \sqrt {20} = 2\sqrt 5 .\)
⦁ \(\sin \widehat {OBA} = \frac{{OA}}{{AB}}.\)
Xét \(\Delta OBH\) vuông tại \(H,\) có: \(\sin \widehat {OBH} = \frac{{OH}}{{OB}}.\)
Suy ra \(\frac{{OA}}{{AB}} = \frac{{OH}}{{OB}},\) do đó \(OH = \frac{{OA \cdot OB}}{{AB}} = \frac{{4 \cdot 2}}{{2\sqrt 5 }} = \frac{{4\sqrt 5 }}{5}.\)
Vậy khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(CD\) bằng \(\frac{{4\sqrt 5 }}{5}.\)
Lời giải
1) Ta có:
\(A = \sqrt 9 + \sqrt {12} + \sqrt {27} - 5\sqrt 3 \)\( = \sqrt {{3^2}} + \sqrt {{2^2} \cdot 3} + \sqrt {{3^2} \cdot 3} - 5\sqrt 3 \)
\( = 3 + 2\sqrt 3 + 3\sqrt 3 - 5\sqrt 3 \)\( = 3 + \left( {2 + 3 - 5} \right) \cdot \sqrt 3 \)\( = 3.\)
Vậy \(A = 3.\)
2) Với \(x > 0\) và \(x \ne 4,\) ta có:
\(B = \left( {\frac{1}{{\sqrt x + 2}} + \frac{1}{{\sqrt x - 2}}} \right) \cdot \left( {\frac{{\sqrt x }}{{\sqrt x - 2}} - \frac{4}{{x - 2\sqrt x }}} \right)\)
\( = \frac{{\sqrt x - 2 + \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} \cdot \left[ {\frac{{\sqrt x }}{{\sqrt x - 2}} - \frac{4}{{\sqrt x \left( {\sqrt x - 2} \right)}}} \right]\)
\( = \frac{{2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} \cdot \frac{{x - 4}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\)
\( = \frac{{2\sqrt x \left( {x - 4} \right)}}{{\left( {x - 4} \right) \cdot \sqrt x \cdot \left( {\sqrt x - 2} \right)}} = \frac{2}{{\sqrt x - 2}}.\)
Như vậy, với \(x > 0\) và \(x \ne 4,\) thì \(B = \frac{2}{{\sqrt x - 2}}.\)
Khi đó, để \(B < 0\) thì \(\frac{2}{{\sqrt x - 2}} < 0,\) tức là \(\sqrt x - 2 < 0,\) suy ra \(\sqrt x < 2,\) nên \(x < 4.\)
Đối chiếu điều kiện \(x > 0\) và \(x \ne 4,\) ta được \(0 < x < 4.\)
Vậy với \(0 < x < 4\) thì \(B < 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


