Câu hỏi:

20/12/2025 3 Lưu

Hai thùng chứa nước hình trụ đều được gắn một vòi chảy ở đáy thùng. Ban đầu chiều cao mực nước ở thùng thứ nhất hơn thùng thứ hai \(0,2\,\,{\rm{m}}\,{\rm{,}}\) để vệ sinh hai thùng này bạn Hân cần mở vòi cho nước chảy hết ra ngoài. Bạn Hân bắt đầu mở vòi cho thùng thứ nhất chảy từ 8 giờ sáng và sau đó 3 phút bắt đầu mở vòi cho thùng thứ hai chảy. Khi quan sát quá trình chảy của hai thùng, Hân thấy rằng:

Tại thời điểm 8 giờ 04 phút thì chiều cao mực nước hai thùng bằng nhau.

Tại thời điểm 8 giờ 08 phút thì thùng thứ hai vừa chảy hết nước và chiều cao mực nước còn lại ở thùng thứ nhất là \(0,4{\rm{\;m}}\).

Tìm chiều cao mực nước ban đầu ở mỗi thùng. Biết rằng tốc độ chảy ở mỗi vòi là không đổi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\,;\,\,x - 0,2\,\,\left( {\rm{m}} \right)\) lần lượt là chiều cao mực nước ban đầu ở thùng thứ nhất và thùng thứ hai \(\left( {x > 0,2} \right)\).

Thùng thứ hai chảy trong 5 phút thì hết nước nên trong 1 phút thùng thứ hai chảy được \(\frac{1}{5}\) thùng.

– Lúc 8 giờ 8 phút, vòi thứ nhất chảy được 1 phút nên chảy được \(\frac{1}{5}\) thùng.

– Lúc 8 giờ 4 phút, vòi thứ hai chảy được 1 phút nên chảy được \(\frac{1}{5}\) thùng.

Khi đó, chiều cao còn lại là \(\frac{4}{5}\) thùng.

Chiều cao thùng thứ hai còn lại là \(\frac{4}{5}\left( {x - 0,2} \right)\), chính là chiều cao của thùng thứ nhất.

Thùng thứ nhất chảy được: \(\frac{1}{5}x + \frac{4}{{25}}.\)

Mỗi phút thùng thứ nhất chảy được \(\left( {\frac{1}{5}x + \frac{4}{{25}}} \right):4 = \frac{1}{{20}}x + \frac{4}{{25}}.\)

– Lúc 8 giờ 8 phút, thùng thứ nhất chảy được 8 phút.

Khi đó, thùng thứ nhất chảy được: \(\frac{8}{{20}}x + \frac{8}{{25}}\,\,\left( {\rm{m}} \right){\rm{.}}\)

Theo đề bài, ta có phương trình \(\frac{3}{5}x - \frac{8}{{25}} = 0,4\) hay \(15x - 8 = 10\). Do đó \(x = 1,2\,\,\left( {{\rm{TM}}} \right){\rm{.}}\)

Vậy chiều cao mực nước ban đầu của thùng thứ nhất là \(1,2{\rm{\;m}}\); thùng thứ hai là \[1{\rm{ m}}.\]\({\rm{\;}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi các phần còn lại lần lượt là \(A\) và \(B\) (như hình vẽ).

Biểu thức biểu thị cạnh còn thiếu của \(A\) là: \(20 - y.\)

Biểu thức biểu thị diện tích phần \(A\) là:

\({S_A} = 15\left( {20 - y} \right) = 300 - 15y.\)

 

Một khu vườn hình chữ nhật có chiều dài là \[30{\rm{ m}}\] và chiều rộng (ảnh 2)

Biểu thức biểu thị cạnh còn thiếu của \(B\) là: \(30 - 15 - x = 15 - x.\)

Biểu thức biểu thị diện tích phần \(B\) là: \({S_B} = 20\left( {15 - x} \right) = 300 - 20x.\)

Vậy biểu thức là \(15\left( {20 - y} \right) + 20\left( {15 - x} \right) = 600 - 20x - 15y\).

b) Thay \(x = 2,4\) và \(y = 1,8\) vào \(S,\) ta được:

.

Vậy diện tích phần còn lại của khu vườn là \(525\,\,{{\rm{m}}^{\rm{2}}}.\)

Lời giải

a) Đổi 15 phút \( = \frac{1}{4}\) giờ.

Khoảng cách của xe máy so với Thành phố Hồ Chí Minh sau khi đi được \(t\) giờ kể từ lúc 7 giờ 15 phút là: \[f\left( t \right) = 40 \cdot \left( {t + \frac{1}{4}} \right) = 40t + 10,\,\,\left( {t \ge 0} \right).\]

Khoảng cách của ô tô so với Thành phố Hồ Chí Minh sau khi đi được \(t\) giờ kể từ lúc 7 giờ 15 phút là: \[g\left( t \right) = 40 - 60t,\,\,\left( {0 \le t \le \frac{2}{3}} \right).\]

Vậy \(a = 40\,;\,\,b = 10\,;\,\,c = - 60\,;\,\,d = 40.\)

b) Hai xe gặp nhau khi và chỉ khi \(40t + 10 = 40 - 60t\) hay \(100t = 30\) nên \(t = \frac{3}{{10}}\) (giờ).

Đổi \(\frac{3}{{10}}\) giờ \[ = 18\] phút.

Thời điểm hai xe gặp nhau là: 7 giờ 15 phút + 18 phút = 7 giờ 33 phút.

Vị trí gặp cách Thành phố Hồ Chí Minh là: \[40 - 60 \cdot \frac{3}{{10}} = 22\,\,\left( {{\rm{km}}} \right).\]

Vậy hai xe gặp nhau lúc 7 giờ 33 phút và cách Thành phố Hồ Chí Minh 22 km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP