Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( {O\,;R} \right)\), kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \((B,C\) là các tiếp điểm), \(AO\) cắt \(BC\) tại \(K\).
1) Chứng minh \(ABOC\) là tứ giác nội tiếp và \(AO\) là đường trung trực của đoạn thẳng \(BC.\)
2) Gọi \(P\) là điểm bất kì thuộc \(\left( O \right)\) sao cho tia \(BO\) nằm giữa hai tia \(BP\) và \(BC,H\) là chân đường vuông góc kẻ từ \(B\) xuống \(PC,M\) là trung điểm \(BH\) và \(PM\) cắt \(\left( O \right)\) tại \(Q\) (khác \(P).\) Chứng minh \(\widehat {QMK} = \widehat {QCA}\).
3) Chứng minh \(\widehat {AQC} = 90^\circ \) và \(AC = 2R\,{\rm{tan}}\widehat {CPQ}\).
Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( {O\,;R} \right)\), kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \((B,C\) là các tiếp điểm), \(AO\) cắt \(BC\) tại \(K\).
1) Chứng minh \(ABOC\) là tứ giác nội tiếp và \(AO\) là đường trung trực của đoạn thẳng \(BC.\)
2) Gọi \(P\) là điểm bất kì thuộc \(\left( O \right)\) sao cho tia \(BO\) nằm giữa hai tia \(BP\) và \(BC,H\) là chân đường vuông góc kẻ từ \(B\) xuống \(PC,M\) là trung điểm \(BH\) và \(PM\) cắt \(\left( O \right)\) tại \(Q\) (khác \(P).\) Chứng minh \(\widehat {QMK} = \widehat {QCA}\).
3) Chứng minh \(\widehat {AQC} = 90^\circ \) và \(AC = 2R\,{\rm{tan}}\widehat {CPQ}\).
Quảng cáo
Trả lời:
|
a) Vì \(AB,\,\,AC\) là tiếp tuyến nên \(\widehat {ABO} = \widehat {ACO} = 90^\circ \). Xét tứ giác \(ABOC\) có \(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ .\) Mà hai góc này ở vị trí đối diện nên tứ giác \(ABOC\) nội tiếp. |
![]() |
Ta có \(AB = AC\) (tính chất hai tiếp tuyến cắt nhau); \(OB = OC = R\).
Suy ra \(AO\) là đường trung trực của \(BC\) (đpcm).
b) Do \(K\) là trung điểm \(BC,M\) là trung điểm \(BH\) nên \(KM\) là đường trung bình \(\Delta BCH.\)
Suy ra \(KM\,{\rm{//}}\,CH\) nên \(\widehat {QMK} = \widehat {QPC}\) (đồng vị)
Vì \(\Delta OCQ\) cân tại \(O\) nên \(\widehat {OCQ} = \widehat {OQC}.\)
Suy ra \(\widehat {OCQ} = \widehat {OQC} = \frac{{180^\circ - \widehat {COQ}}}{2} = 90^\circ - \frac{{\widehat {COQ}}}{2}.\)
Vì \[AC\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[C\] nên \(OC \bot CA\) hay \(\widehat {OCA} = 90^\circ \).
Suy ra \[\widehat {ACQ} = 90^\circ - \widehat {OCQ}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {COQ}}}{2}} \right) = \frac{{\widehat {COQ}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]
Mặt khác nên \[\widehat {QPC} = \frac{{\widehat {COQ}}}{2}.\,\,\,\,\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {QCA} = \widehat {QPC}\). Vậy \(\widehat {QMK} = \widehat {QCA}\).
c) Kẻ \(AQ\) cắt \(\left( O \right)\) tại \(E.\)
Xét \(\Delta ACQ\) và \(\Delta AEC\) có \(\widehat {CAE}\) chung; .
Do đó
Suy ra \(\frac{{AC}}{{AE}} = \frac{{AQ}}{{AC}}\) hay
Xét \(\Delta ACK\) và \(\Delta AOC\) có \(\widehat {AKC} = \widehat {ACO} = 90^\circ \); \(\widehat {ACK} = \widehat {AOC}\) (cùng phụ \(\widehat {OCK}\,)\).
Do đó .
Suy ra \(\frac{{AC}}{{AK}} = \frac{{AO}}{{AC}}\) hay
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(AK \cdot AO = AE \cdot AQ\) hay \(\frac{{AK}}{{AQ}} = \frac{{AE}}{{AO}}\).
Xét \(\Delta AKQ\) và \(\Delta AEO\) có \(\widehat {OAE}\) chung; \(\frac{{AK}}{{AQ}} = \frac{{AE}}{{AO}}\) (chứng minh trên).
Do đó . Suy ra \(\widehat {AKQ} = \widehat {AEO}\).
|
Chứng minh bổ đề: Cho tứ giác \(ABCD\) có \(\widehat {ACB} = \widehat {ADB}.\) Chứng minh tứ giác \(ABCD\) là tứ giác nội tiếp.
Xét \(\Delta AFD\) và \(\Delta BFK\) có: \(\widehat {AFD} = \widehat {BFK}\) (đối đỉnh) và \(\widehat {ADF} = \widehat {BKF}\) (chứng minh trên) Do đó suy ra \(\frac{{AF}}{{BF}} = \frac{{DF}}{{KF}}\) nên \(\frac{{AF}}{{DF}} = \frac{{BF}}{{KF}}.\) Xét \(\Delta DFK\) và \(\Delta AFB\) có: \(\frac{{AF}}{{DF}} = \frac{{BF}}{{KF}}\) và \[\widehat {DFK} = \widehat {AFB}\] (đối đỉnh) Do đó suy ra \(\widehat {FDK} = \widehat {FAB}.\,\,\,\left( 7 \right)\) ⦁ Ta có \(\widehat {ABK}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ABK} = 90^\circ ,\) do đó \(\Delta ABK\) vuông tại \(B,\) suy ra \(\widehat {FAB} + \widehat {AKB} = 90^\circ .\,\,\,\left( 8 \right)\) Từ \(\left( 6 \right),\,\,\left( 7 \right),\,\,\left( 8 \right)\) suy ra \(\widehat {ADB} + \widehat {FDK} = 90^\circ \) hay \(\widehat {ADK} = 90^\circ .\) Khi đó \(\Delta ADK\) vuông tại \(D\) nên điểm \(D\) nằm trên đường tròn đường kính \(AK.\) Suy ra tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) đường kính \(AK.\) |
Áp dụng bổ đề trên cho tứ giác \(ACKQ\) có \(\widehat {AKQ} = \widehat {AEO}\) nên tứ giác \(ACKQ\) nội tiếp.
Suy ra \(\widehat {AQC} = \widehat {AKC} = 90^\circ \).
Do \(\widehat {AQC} = 90^\circ \) nên \(\widehat {CQE} = 90^\circ \) nên \(CE\) là đường tròn đường kính của \[\left( O \right)\].
Suy ra ba điểm \(E,\,\,O,\,\,C\) thẳng hàng nên \(\widehat {CPQ} = \widehat {CEQ}\).
Ta có \(\tan \widehat {CPQ} = \tan \widehat {CEQ} = \frac{{AC}}{{EC}} = \frac{{AC}}{{2R}}\).
Do đó \(AC = 2R\tan \widehat {ACQ} = 2R\tan \widehat {CPQ}\) (đpcm).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Gọi các phần còn lại lần lượt là \(A\) và \(B\) (như hình vẽ). Biểu thức biểu thị cạnh còn thiếu của \(A\) là: \(20 - y.\) Biểu thức biểu thị diện tích phần \(A\) là: \({S_A} = 15\left( {20 - y} \right) = 300 - 15y.\) |
![]() |
Biểu thức biểu thị cạnh còn thiếu của \(B\) là: \(30 - 15 - x = 15 - x.\)
Biểu thức biểu thị diện tích phần \(B\) là: \({S_B} = 20\left( {15 - x} \right) = 300 - 20x.\)
Vậy biểu thức là \(15\left( {20 - y} \right) + 20\left( {15 - x} \right) = 600 - 20x - 15y\).
b) Thay \(x = 2,4\) và \(y = 1,8\) vào \(S,\) ta được:
.
Vậy diện tích phần còn lại của khu vườn là \(525\,\,{{\rm{m}}^{\rm{2}}}.\)
Lời giải
a) Đổi 15 phút \( = \frac{1}{4}\) giờ.
Khoảng cách của xe máy so với Thành phố Hồ Chí Minh sau khi đi được \(t\) giờ kể từ lúc 7 giờ 15 phút là: \[f\left( t \right) = 40 \cdot \left( {t + \frac{1}{4}} \right) = 40t + 10,\,\,\left( {t \ge 0} \right).\]
Khoảng cách của ô tô so với Thành phố Hồ Chí Minh sau khi đi được \(t\) giờ kể từ lúc 7 giờ 15 phút là: \[g\left( t \right) = 40 - 60t,\,\,\left( {0 \le t \le \frac{2}{3}} \right).\]
Vậy \(a = 40\,;\,\,b = 10\,;\,\,c = - 60\,;\,\,d = 40.\)
b) Hai xe gặp nhau khi và chỉ khi \(40t + 10 = 40 - 60t\) hay \(100t = 30\) nên \(t = \frac{3}{{10}}\) (giờ).
Đổi \(\frac{3}{{10}}\) giờ \[ = 18\] phút.
Thời điểm hai xe gặp nhau là: 7 giờ 15 phút + 18 phút = 7 giờ 33 phút.
Vị trí gặp cách Thành phố Hồ Chí Minh là: \[40 - 60 \cdot \frac{3}{{10}} = 22\,\,\left( {{\rm{km}}} \right).\]
Vậy hai xe gặp nhau lúc 7 giờ 33 phút và cách Thành phố Hồ Chí Minh 22 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Một khu vườn hình chữ nhật có chiều dài là \[30{\rm{ m}}\] và chiều rộng (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid4-1766231096.png)
![Một khu vườn hình chữ nhật có chiều dài là \[30{\rm{ m}}\] và chiều rộng (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid3-1766231067.png)
