Câu hỏi:

20/12/2025 32 Lưu

1) Chứng minh đẳng thức \(\frac{4}{{\sqrt 5  - \sqrt 3 }} - \sqrt {12}  = 2\sqrt 5 .\)

2) Rút gọn biểu thức \(F = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{1}{{x - \sqrt x }}} \right):\left( {\frac{1}{{\sqrt x  + 1}} + \frac{2}{{x - 1}}} \right)\) với \(x > 0\) và \(x \ne 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1) Ta có: \(\frac{4}{{\sqrt 5  - \sqrt 3 }} - \sqrt {12}  = \frac{{4\left( {\sqrt 5  + \sqrt 3 } \right)}}{{5 - 3}} - 2\sqrt 3  = \frac{{4\left( {\sqrt 5  + \sqrt 3 } \right)}}{2} - 2\sqrt 3 \)

\( = 2\sqrt 5  + 2\sqrt 5  - 2\sqrt 3  = 2\sqrt 5 .\)

Vậy đẳng thức được chứng minh.

2) Với \(x > 0\)và \(x \ne 1\), ta có:

\(F = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{1}{{x - \sqrt x }}} \right):\left( {\frac{1}{{\sqrt x  + 1}} + \frac{2}{{x - 1}}} \right)\)

\[ = \left[ {\frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{1}{{\sqrt x \left( {\sqrt x  - 1} \right)}}} \right]:\left[ {\frac{1}{{\sqrt x  + 1}} + \frac{2}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}} \right]\]

\[ = \frac{{x - 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}}:\left[ {\frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} + \frac{2}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}} \right]\]

\( = \frac{{x - 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}}:\frac{{\sqrt x  + 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)\( = \frac{{x - 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}}:\frac{1}{{\sqrt x  - 1}}\)

\( = \frac{{x - 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}}.\frac{{\sqrt x  - 1}}{1}\)\( = \frac{{x - 1}}{{\sqrt x }}.\)

Vậy \(F = \frac{{x - 1}}{{\sqrt x }}\) với \(x > 0\) và \(x \ne 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Điều kiện xác định:

\({x^3} + 8 \ge 0,\) hay \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) \ge 0,\) nên \(x \ge - 2\) (do \({x^2} - 2x + 4 > 0\) với mọi \(x \in \mathbb{R}).\)

Ta có: \(2\left( {{x^2} - 3x + 2} \right) = 3\sqrt {{x^3} + 8} \)

 \(2\left( {{x^2} - 2x + 4} \right) - 2\left( {x + 2} \right) = 3\sqrt {x + 2} \cdot \sqrt {{x^2} - 2x + 4} .\)

Đặt \(u = \sqrt {{x^2} - 2x + 4} \ge \sqrt 3 \)\(v = \sqrt {x + 2} \ge 0.\)

Ta được phương trình: \(2{u^2} - 2{v^2} = 3uv\)

 \(\left( {2u + v} \right)\left( {u - 2v} \right) = 0\)

\(u = 2v\) (vì \(u \ge \sqrt 3 ,v \ge 0\) nên \(2u + v > 0).\)

Suy ra \(\sqrt {{x^2} - 2x + 4} = 2\sqrt {x + 2} \)

\({x^2} - 2x + 4 = 4\left( {x + 2} \right)\)

\({x^2} - 6x - 4 = 0\)

\(x = 3 + \sqrt {13} \) hoặc \(x = 3 - \sqrt {13} .\)

Ta thấy các giá trị của \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \ge - 2.\)

Vậy phương trình có hai nghiệm là \(x = 3 + \sqrt {13} ;\,\,x = 3 - \sqrt {13} .\)

2) Ta có: \(P = \frac{3}{{{x^2} + {y^2}}} + \frac{{10}}{{xy}} + 8xy + 3.\)

Theo bất đẳng thức AM-GM, ta có: \[xy \le \frac{{{{\left( {x + y} \right)}^2}}}{4} = \frac{{{2^2}}}{4} = 1.\]

Chứng minh bổ đề: Với hai số thực dương \(a,\,\,b\) ta luôn có \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\)

Theo bất đẳng thức Cauchy, ta có: \(a + b \ge 2\sqrt {ab} ;\,\,\frac{1}{a} + \frac{1}{b} \ge \frac{2}{{\sqrt {ab} }}.\)

Suy ra \(\left( {a + b} \right)\left( {\frac{1}{a} + \frac{1}{b}} \right) \ge 2\sqrt {ab} \cdot \frac{2}{{\sqrt {ab} }} = 4.\)

Do đó \(\left( {\frac{1}{a} + \frac{1}{b}} \right) \ge \frac{4}{{a + b}}.\)

 

Theo bổ đề trên, ta có:

\(P = \frac{3}{{{x^2} + {y^2}}} + \frac{{10}}{{xy}} + 8xy + 3 = \frac{3}{{{x^2} + {y^2}}} + \frac{3}{{2xy}} + 8xy + \frac{8}{{xy}} + \frac{1}{{2xy}} + 3\)

\( \ge \frac{{3 \cdot 4}}{{{x^2} + {y^2} + 2xy}} + 2 \cdot \sqrt {8xy \cdot \frac{8}{{xy}}} + \frac{1}{2} + 3 = \frac{{12}}{{{{\left( {x + y} \right)}^2}}} + 2 \cdot 8 + \frac{1}{2} + 3\)

\( \ge \frac{{12}}{{{2^2}}} + 16 + \frac{1}{2} + 3 = \frac{{45}}{2}.\)

Dấu bằng xảy ra khi và chỉ khi \(x = y = 1.\)

Vậy giá trị nhỏ nhất của \(P\) bằng \(\frac{{45}}{2}\) khi \(x = y = 1.\)

Câu 3

A. \(x \ne 9.\)          
B. \(x \ge 0.\)           
C. \(\left\{ \begin{array}{l}x \ne 0\\x \le 9.\end{array} \right.\)                             
D. \(\left\{ \begin{array}{l}x \ge 0\\x \ne 9.\end{array} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m < 2.\)             
B. \(m > 1.\)             
C. \(m > 2.\)             
D. \(m < 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(24\pi {\rm{\;c}}{{\rm{m}}^2}.\)     
B. \(6\pi {\rm{\;c}}{{\rm{m}}^2}.\)         
C. \(36\pi {\rm{\;c}}{{\rm{m}}^2}.\)     
D. \(12\pi {\rm{\;c}}{{\rm{m}}^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP