Câu hỏi:

21/12/2025 3 Lưu

Lớp \(12A5\) có \(25\) học sinh nam, \(15\) học sinh nữ. Có bao nhiêu cách lấy ra cùng lúc \(4\) học sinh bất kì trong lớp đó để phân công làm tổ trưởng của \(4\) tổ khác nhau là:

A. \(C_{40}^4\).             

B. \(A_{40}^4\).          

C. \(C_{25}^1C_{15}^2 + C_{25}^2C_{15}^1\).                                       

D. \(C_{25}^1C_{15}^2 + C_{24}^3 + C_{14}^3\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tổng số học sinh trong lớp là \(40\). Số cách lấy ra \(4\) học sinh bất kì rồi phân công làm tổ trưởng\(4\)tổ khác nhau là: \(A_{40}^4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Trên giá sách có \(4 + 5 + 6 = 15\) quyển sách.

Lấy \(1\) quyển tùy ý từ \(15\) quyển nên có 15 cách lấy.

b) Đúng: Lấy một quyển sách Toán hoặc Vật lý từ giá sách.

Lấy một quyển Toán: có 4 cách lấy.

Lấy một quyển Vật lý: có 5 cách lấy

Việc lấy sách được hoàn thành bởi một trong hai hành động trên nên theo quy tắc cộng có \(4 + 5 = 9\) cách lấy.

c) Sai: Lấy hai quyển sách gồm Toán và Hóa học từ giá sách.

Lấy một quyển Toán: có \(4\) cách lấy.

Lấy một quyển Hóa học: có 6 cách lấy.

Việc lấy sách được hoàn thành bởi liên tiếp hai hành động trên nên theo quy tắc nhân có \(4.{\rm{6}} = 24\) cách lấy.

d) Đúng: Lấy ba quyển sách có đủ ba môn học từ giá sách.

Lấy một quyển Toán: có \(4\) cách lấy.

Lấy một quyển Vật lý: có 5 cách lấy

Lấy một quyển Hóa học: có 6 cách lấy.

Việc lấy sách được hoàn thành bởi liên tiếp ba hành động trên nên theo quy tắc nhân có \(4.5.{\rm{6}} = 120\) cách lấy.

Lời giải

Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).

\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)

Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le  - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow  - 3 \le m \le  - 1\)

Vậy \( - 3 \le m \le  - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.

Câu 3

A. \(\left( { - \infty  - 1} \right) \cup \left( {1; + \infty } \right)\).           

B. \(\left( { - \infty ;1} \right)\).                          

C. \(\left( { - 1;1} \right)\).                                

D. \(\left[ { - 1;1} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(0\).                           

B. \(1\).                         

C. \(2\).                        

D. \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow u  = (1; - 2).\)                   

B. \(\overrightarrow u  = \left( {4; - 6} \right).\)                                       

C. \(\overrightarrow u  = \left( {3;2} \right).\)           

D. \(\overrightarrow u  = \left( {2;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(6.\).                          

B. \(10.\).                      

C. \(8.\).                       

D. \(3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(54\).                          
B. \(16\).                        
C. \(48\).                       
D. \( - 54\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP