Trong mặt phẳng với hệ tọa độ \[Oxy\],cho tam giác \(ABC\) nội tiếp đường tròn tâm \(I\left( {1;0} \right)\), bán kính \(R = 5\). Chân các đường cao kẻ từ \(B,C\) lần lượt là \(H\left( {3;1} \right),K\left( {0; - 3} \right)\). Tính bình phương bán kính đường tròn ngoại tiếp tứ giác \(BCHK\), biết rằng điểm A có tung độ dương.
Trong mặt phẳng với hệ tọa độ \[Oxy\],cho tam giác \(ABC\) nội tiếp đường tròn tâm \(I\left( {1;0} \right)\), bán kính \(R = 5\). Chân các đường cao kẻ từ \(B,C\) lần lượt là \(H\left( {3;1} \right),K\left( {0; - 3} \right)\). Tính bình phương bán kính đường tròn ngoại tiếp tứ giác \(BCHK\), biết rằng điểm A có tung độ dương.
Quảng cáo
Trả lời:

Đường tròn \(\left( C \right)\) ngoại tiếp tam giác \(ABC\)có phương trình là: \({\left( {x - 1} \right)^2} + {y^2} = 25\).
Tứ giác\(BCHK\) nội tiếp đường tròn đường kính \(BC\) (vì \(\widehat {BHC} = \widehat {BKC} = {90^0}\)).
Dựng tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A.\) Ta có \[\widehat {CAx} = \widehat {CBA} = \] sđ \(\left( 1 \right)\)
Mặt khác: \[\widehat {CBA} = \widehat {AHK}\] (Vì tứ giác \(BCHK\) nội tiếp) \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {CAx} = \widehat {AHK}\]. Vậy \[HK//Ax\], nên \[HK \bot AI\].
Đường thẳng \(AI\) đi qua \(I\) và nhận \(\overrightarrow {HK} \) làm véc tơ pháp tuyến nên có phương trình là:
\(3\left( {x - 1} \right) + 4y = 0 \Leftrightarrow 3x + 4y - 3 = 0\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}3x + 4y - 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow A\left( { - 3;3} \right)\) (vì \(A\)có tung độ dương).
Đường thẳng \(AB\) đi qua \(A\) và \(K\) nên có phương trình: \(2x + y + 3 = 0\).
Tọa độ điểm \(B\) là nghiệm của hệ \[\left\{ \begin{array}{l}3x + y + 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow B\left( {1; - 5} \right)\] (vì \(B\) khác \(A\)).
Đường thẳng \(AC\)đi qua \(A\) và \(H\) nên có phương trình: \(x + 3y - 6 = 0\).
Tọa độ điểm \(C\) là nghiệm của hệ \[\left\{ \begin{array}{l}x + 3y - 6 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow C\left( {6;0} \right)\] (vì \(C\) khác\(A\)).
Vậy đường tròn ngoại tiếp tứ giác BCHK có đường kính \(BC\) bằng \(\frac{{25}}{2} = 12,5\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng: Trên giá sách có \(4 + 5 + 6 = 15\) quyển sách.
Lấy \(1\) quyển tùy ý từ \(15\) quyển nên có 15 cách lấy.
b) Đúng: Lấy một quyển sách Toán hoặc Vật lý từ giá sách.
Lấy một quyển Toán: có 4 cách lấy.
Lấy một quyển Vật lý: có 5 cách lấy
Việc lấy sách được hoàn thành bởi một trong hai hành động trên nên theo quy tắc cộng có \(4 + 5 = 9\) cách lấy.
c) Sai: Lấy hai quyển sách gồm Toán và Hóa học từ giá sách.
Lấy một quyển Toán: có \(4\) cách lấy.
Lấy một quyển Hóa học: có 6 cách lấy.
Việc lấy sách được hoàn thành bởi liên tiếp hai hành động trên nên theo quy tắc nhân có \(4.{\rm{6}} = 24\) cách lấy.
d) Đúng: Lấy ba quyển sách có đủ ba môn học từ giá sách.
Lấy một quyển Toán: có \(4\) cách lấy.
Lấy một quyển Vật lý: có 5 cách lấy
Lấy một quyển Hóa học: có 6 cách lấy.
Việc lấy sách được hoàn thành bởi liên tiếp ba hành động trên nên theo quy tắc nhân có \(4.5.{\rm{6}} = 120\) cách lấy.
Lời giải
Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).
\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)
Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow - 3 \le m \le - 1\)
Vậy \( - 3 \le m \le - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.
Câu 3
A. \(\left( { - \infty - 1} \right) \cup \left( {1; + \infty } \right)\).
B. \(\left( { - \infty ;1} \right)\).
C. \(\left( { - 1;1} \right)\).
D. \(\left[ { - 1;1} \right]\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(6.\).
B. \(10.\).
C. \(8.\).
D. \(3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt.
B. Hàm số đạt giá trị nhỏ nhất tại \[x = 2\].
C. Hàm số nghịch biến trên khoảng \[\left( {2; + \infty } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(0\).
B. \(1\).
C. \(2\).
D. \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\overrightarrow u = (1; - 2).\)
B. \(\overrightarrow u = \left( {4; - 6} \right).\)
C. \(\overrightarrow u = \left( {3;2} \right).\)
D. \(\overrightarrow u = \left( {2;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
