Tính giá trị biểu thức \(P = {\cos ^2}1^\circ + {\cos ^2}2^\circ + {\cos ^2}3^\circ + ... + {\cos ^2}178^\circ + {\cos ^2}179^\circ + {\cos ^2}180^\circ \).
Quảng cáo
Trả lời:
Đáp án:
Lời giải
\(P = {\cos ^2}1^\circ + {\cos ^2}2^\circ + {\cos ^2}3^\circ + ... + {\cos ^2}178^\circ + {\cos ^2}179^\circ + {\cos ^2}180^\circ \)
\(P = \left( {{{\cos }^2}1^\circ + {{\cos }^2}179^\circ } \right) + \left( {{{\cos }^2}2^\circ + {{\cos }^2}178^\circ } \right) + ... + \left( {{{\cos }^2}89^\circ + {{\cos }^2}91^\circ } \right) + {\cos ^2}90^\circ + {\cos ^2}180^\circ \)
\(P = \left( {{{\cos }^2}1^\circ + {{\cos }^2}1^\circ } \right) + \left( {{{\cos }^2}2^\circ + {{\cos }^2}2^\circ } \right) + ... + \left( {{{\cos }^2}89^\circ + {{\cos }^2}89^\circ } \right) + {\cos ^2}90^\circ + {\cos ^2}180^\circ \)
\[P = 2{\cos ^2}1^\circ + 2{\cos ^2}2^\circ + ... + 2{\cos ^2}89^\circ + {\cos ^2}90^\circ + {\cos ^2}180^\circ \]
\[P = 2\left( {{{\cos }^2}1^\circ + {{\cos }^2}89^\circ } \right) + 2\left( {{{\cos }^2}2^\circ + {{\cos }^2}88^\circ } \right) + ... + 2\left( {{{\cos }^2}44^\circ + {{\cos }^2}46^\circ } \right) + 2{\cos ^2}45^\circ + {\cos ^2}90^\circ + {\cos ^2}180^\circ \]
\[P = 2\left( {{{\cos }^2}1^\circ + {{\sin }^2}1^\circ } \right) + 2\left( {{{\cos }^2}2^\circ + {{\sin }^2}2^\circ } \right) + ... + 2\left( {{{\cos }^2}44^\circ + {{\sin }^2}44^\circ } \right) + 2{\cos ^2}45^\circ + {\cos ^2}90^\circ + {\cos ^2}180^\circ \]
\[P = 2 \cdot 44 + 1 + 1 = 90\].
Trả lời: 90.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Xét \(\Delta ABC\) có \(\widehat {BAC} = 90^\circ + 30^\circ = 120^\circ \); \(\widehat {ABC} = 90^\circ - 60^\circ = 30^\circ \); \(\widehat {ACB} = 180^\circ - 120^\circ - 30^\circ = 30^\circ \).
Áp dụng định lí sin cho tam giác \(ABC\), có
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{70\sin 120^\circ }}{{\sin 30^\circ }} = 70\sqrt 3 \).
Xét \(\Delta AHC\) có \(CH = BC\sin 60^\circ = 70\sqrt 3 \cdot \sin 60^\circ = 105\).
Vậy ngọn núi cao 105 m.
Trả lời: 105.
Câu 2
Lời giải
Lời giải
a) Với \(0^\circ < \alpha < 90^\circ \) thì \(\sin \alpha > 0\).
Khi đó \(\sin \alpha \cdot \cos \alpha > 0\).
b) Có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9}\). Suy ra \(\sin \alpha = \frac{{2\sqrt 2 }}{3}\).
c) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{2\sqrt 2 }}{3}:\frac{1}{3} = 2\sqrt 2 \).
d) \[\frac{{6\sqrt 2 \sin \alpha + 3\cos \alpha }}{{\sqrt 2 \tan \alpha + 2\sqrt 2 \cot \alpha }} = \frac{{6\sqrt 2 \cdot \frac{{2\sqrt 2 }}{3} + 3 \cdot \frac{1}{3}}}{{\sqrt 2 \cdot 2\sqrt 2 + 2\sqrt 2 \cdot \frac{1}{{2\sqrt 2 }}}} = \frac{9}{5}\].
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
