Câu hỏi:

24/12/2025 144 Lưu

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), \(SA = AB = 2a\), tam giác \(ABC\)vuông tại \(B\) (tham khảo hình vẽ). Khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

Cho hình chóp S.ABC có SA vuông góc (ABC), SA = AB = 2a, tam giác ABC vuông tại B (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng (SBC) bằng (ảnh 1)

A. \(a\sqrt 3 \).
B. \(a\). 
C. \(2a\). 
D. \(a\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Cho hình chóp S.ABC có SA vuông góc (ABC), SA = AB = 2a, tam giác ABC vuông tại B (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng (SBC) bằng (ảnh 2)

Hạ \(AH \bot SB\) tại \(H\).

Vì tam giác \(ABC\)vuông tại \(B\) nên \(BC \bot AB\) (1).

Mà \(SA \bot \left( {ABC} \right)\)\( \Rightarrow SA \bot BC\) (2).

Từ (1) và (2), suy ra \(BC \bot \left( {SAB} \right)\)\( \Rightarrow BC \bot AH\) mà \(AH \bot SB\) nên \(AH \bot \left( {SBC} \right)\).

Do đó \(d\left( {A,\left( {SBC} \right)} \right) = AH\).

Xét \(\Delta SAB\) vuông tại \(A,\) có \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}}\)\( = \frac{1}{{4{a^2}}} + \frac{1}{{4{a^2}}}\)\( = \frac{1}{{2{a^2}}} \Rightarrow AH = a\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\mathbb{R}\).  
B. \(\left( {0; + \infty } \right)\). 
C. \(\mathbb{R}\backslash \left\{ 0 \right\}\). 
D. \(\left[ {0; + \infty } \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Tập xác định của hàm số là \(\mathbb{R}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc (ABCD). Gọi M là hình chiếu của A trên SB. Khẳng định nào sau đây là đúng? (ảnh 1)

Vì \(ABCD\) là hình vuông nên \(BC \bot AB\) (1).

Mà \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\) (2).

Từ (1) và (2), suy ra \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AM\)(3).

Vì \(M\) là hình chiếu của \(A\) trên \(SB\) nên \(AM \bot SB\) (4).

Từ (3) và (4), suy ra \(AM \bot \left( {SBC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. .\(\frac{a}{{\sqrt 2 }}\).   
B. \(\frac{a}{2}\).
C. \(\frac{a}{{\sqrt 6 }}\).  
D. \(\frac{a}{{\sqrt 3 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right).\)  
B. \(D = \left[ { - 1;3} \right].\)
C. \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right).\) 
D. \(D = \left( { - 1;3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ { - 1;1} \right]\). 
B. \(\left( { - \infty ;1} \right]\).                 
C. \(\left[ { - \sqrt 7 ;\sqrt 7 } \right]\). 
D. \(\left[ {1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP