Cho khối chóp \[S.ABC\] có đáy là tam giác đều cạnh \[a\], \(SA\) vuông góc với mặt phẳng đáy và khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{3a}}{4}\). Tính thể tích khối chóp đã cho.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \(M\) là trung điểm của \(BC\), \(H\) là hình chiếu vuông góc của \(A\) lên \(SM\).
Vì \(\Delta ABC\) đều mà \(AM\) là trung tuyến nên \(AM \bot BC\) (1).
Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) (2).
Từ (1) và (2), suy ra \(BC \bot \left( {SAM} \right)\)\( \Rightarrow BC \bot AH\) mà \(AH \bot SM \Rightarrow AH \bot \left( {SBC} \right)\).
Khi đó ta có \(AH = d\left( {A,\left( {SBC} \right)} \right)\). Ta có: \(AM = \frac{{a\sqrt 3 }}{2},AH = \frac{{3a}}{4}\).
\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} \Rightarrow \frac{1}{{S{A^2}}} = \frac{4}{{9{a^2}}} \Rightarrow SA = \frac{{3a}}{2}\).
\[V = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.\frac{{3a}}{2} = \frac{{{a^3}\sqrt 3 }}{8}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Gọi \(O\) là tâm của hình vuông \(ABCD\).
Vì \(ABCD\) là hình vuông nên \(AC \bot BO\) mà \(BO \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\).
Suy ra \(BO \bot \left( {SAC} \right)\)
Do đó \(d\left( {B,\left( {SAC} \right)} \right) = BO\).
Vì \(ABCD\) là hình vuông cạnh a nên \(BD = a\sqrt 2 \Rightarrow BO = \frac{{a\sqrt 2 }}{2}\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Có \(ABCD\) là hình chữ nhật nên \(CD \bot AD\) (1).
Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\) (2).
Từ (1) và (2), ta có: \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot AK\) mà \(AK \bot SD\)\( \Rightarrow AK \bot \left( {SCD} \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
