Câu hỏi:

24/12/2025 4 Lưu

Cho tam giác \(ABC\) với tọa độ đỉnh \(C\left( {4; - 1} \right)\), đường cao kẻ từ đỉnh \(A\) là \(\left( {{d_1}} \right):2x - 3y + 12 = 0\) và đường trung tuyến kẻ từ đỉnh \(A\) là \(\left( {{d_2}} \right):2x + 3y = 0\). Lập phương trình tổng quát các đường thẳng \(AB\), \(AC\), \(BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác \(ABC\) với tọa độ đỉnh \(C\left( {4; - 1} \right)\), đường cao kẻ từ đỉnh \(A\) là \(\left( {{d_1}} \right) (ảnh 1)

Vì \(BC\) vuông góc với \(\left( {{d_1}} \right)\) nên đường thẳng \(BC\) có vectơ pháp tuyến \(\overrightarrow {{n_{BC}}}  = \left( {3;2} \right)\).

Phương trình đường thẳng \(BC\) là: \(3\left( {x - 4} \right) + 2\left( {y + 1} \right) = 0 \Leftrightarrow 3x + 2y - 10 = 0\).

Điểm \(A\) là giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) nên ta có tọa độ điểm \(A\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}2x - 3y + 12 = 0\\2x + 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y = 2\end{array} \right. \Rightarrow A\left( { - 3;2} \right)\).

Đường thẳng \(AC\) nhận vectơ \(\overrightarrow {AC}  = \left( {4 + 3; - 1 - 2} \right) = \left( {7; - 3} \right)\) là một vectơ chỉ phương, do đó, nó có một vectơ pháp tuyến là \(\overrightarrow {{n_{AC}}}  = \left( {3;7} \right)\).

Phương trình đường thẳng \(AC\) là:

\(3\left( {x + 3} \right) + 7\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 7y - 5 = 0\).

Gọi \(M\) là trung điểm của \(BC\), khi đó điểm \(M\) là giao điểm của \({d_2}\) và \(BC\)

Tọa độ điểm \(M\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}3x + 2y - 10 = 0\\2x + 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 4\end{array} \right. \Rightarrow M\left( {6; - 4} \right)\).

Do \(M\) là trung điểm của \(BC\) nên ta có:

\(\left\{ \begin{array}{l}{x_B} = 2.6 - 4 = 8\\{y_B} = 2.( - 4) - ( - 1) =  - 7\end{array} \right. \Rightarrow B\left( {8; - 7} \right)\).

Đường thẳng \(AB\) nhận vectơ \(\overrightarrow {AB}  = \left( {11; - 9} \right)\) là vectơ chỉ phương và nhận vectơ \(\overrightarrow {{n_{AB}}}  = \left( {9;11} \right)\) là vectơ pháp tuyến.

Do đó, phương trình của đường thẳng \(AB\) là:

\(9\left( {x - 8} \right) + 11\left( {y + 7} \right) = 0 \Leftrightarrow 9x + 11y + 5 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Hàm số mô tả sự phụ thuộc của số tiền \(y\) (đồng) phải chi trả và số bút \(x\) (cái) cần mua của bạn Lan với giá tiền một chiếc bút là 5000 đồng là \(y = 5000x\) (đồng).

Câu 2

A. 3;                          
B. 2;                              
C. 5;                           
D. 1.

Lời giải

Đáp án đúng là: B

Dựa vào bảng ta thấy, tại \(x = 1,5\) giá trị \(y\) tương ứng là 2. Do đó, giá trị hàm số tại \(x = 1,5\) là 2.

Câu 3

A. \(\left( {1;\,\,3} \right)\);                              
B. \(\left( {0;\,\,1} \right)\);  
C.\(\left( {3;\, + \infty } \right)\);         
D. \(\left( { - \infty ;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(D = \left( { - \infty ;0} \right)\);                 
B. \(D = \mathbb{R}\backslash \left\{ 2 \right\}\);                   
C. \(D = \left( { - \infty ;2} \right)\);                 
D.\(D = \left( { - \infty ;2} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = 6{x^2} - {x^3} + 20\);                        

B. \(y = {x^2} - 3x + 23\);

C. \(y = {x^2} - 4\);                                          
D. \(y = {x^2} - x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = 1\);                
B. \(x = 6\);                    
C. \(x = 3\);                
D. \(x = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\(S = \mathbb{R}\);                                     
B.\(S = \emptyset \);   
C.\(S = \left\{ {1; - 1} \right\}\);                   
D.\(S = \left\{ {2; - 2} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP