Câu hỏi:

25/12/2025 27 Lưu

Cho \(f\left( x \right) = {x^{2018}} - 1009{x^2} + 2019x\). Giá trị của \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {\Delta x + 1} \right) - f\left( 1 \right)}}{{\Delta x}}\) bằng:

A. \(1009\)
B. \(1008\) 
C. \(2018\)  
D. \(2019\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {\Delta x + 1} \right) - f\left( 1 \right)}}{{\Delta x}} = f'\left( 1 \right)\).

Mà \(f'\left( x \right) = 2018{x^{2017}} - 2018x + 2019\).

Do đó \(f'\left( 1 \right) = {2018.1^{2017}} - 2018.1 + 2019 = 2019.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có \({a^2}{b^3} = 16\)

\( \Leftrightarrow {\log _2}{a^2}{b^3} = {\log _2}16\)

\( \Leftrightarrow {\log _2}{a^2} + {\log _2}{b^3} = 4\)

\( \Leftrightarrow 2{\log _2}a + 3{\log _2}b = 4\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Áp dụng công thức \({A_n} = {A_0}{\left( {1 + r} \right)^n}\) với \(n\) là số kỳ hạn, \({A_0}\) là số tiền ban đầu, \({A_n}\) là số tiền có được sau \(n\) kỳ hạn, \(r\) là lãi suất.

Suy ra \({A_9} = {A_0}{\left( {1 + r} \right)^9} \Rightarrow r = \sqrt[9]{{\frac{{{A_9}}}{{{A_0}}}}} - 1 = \sqrt[9]{{\frac{{61758000}}{{58000000}}}} - 1 \approx 0,7\% \).

Câu 3

A. \(y = {\log _2}x\).
B. \(y = {2^x}\). 
C. \(y = {\left( {\frac{1}{2}} \right)^x}\).  
D. \(y = {\log _{\frac{1}{2}}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP