Câu hỏi:

25/12/2025 31 Lưu

Tìm mệnh đề sai trong các mệnh đề sau

A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì giao tuyến của chúng nếu có cũng vuông góc với mặt phẳng thứ ba đó.
B. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
C. Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này và vuông góc với giao tuyến đều vuông góc với mặt phẳng kia.
D. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau theo một giao tuyến vuông góc với mặt phẳng thứ ba.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có \({a^2}{b^3} = 16\)

\( \Leftrightarrow {\log _2}{a^2}{b^3} = {\log _2}16\)

\( \Leftrightarrow {\log _2}{a^2} + {\log _2}{b^3} = 4\)

\( \Leftrightarrow 2{\log _2}a + 3{\log _2}b = 4\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Áp dụng công thức \({A_n} = {A_0}{\left( {1 + r} \right)^n}\) với \(n\) là số kỳ hạn, \({A_0}\) là số tiền ban đầu, \({A_n}\) là số tiền có được sau \(n\) kỳ hạn, \(r\) là lãi suất.

Suy ra \({A_9} = {A_0}{\left( {1 + r} \right)^9} \Rightarrow r = \sqrt[9]{{\frac{{{A_9}}}{{{A_0}}}}} - 1 = \sqrt[9]{{\frac{{61758000}}{{58000000}}}} - 1 \approx 0,7\% \).

Câu 3

A. \(y = {\log _2}x\).
B. \(y = {2^x}\). 
C. \(y = {\left( {\frac{1}{2}} \right)^x}\).  
D. \(y = {\log _{\frac{1}{2}}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP