Câu hỏi:

25/12/2025 3 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\)là hình vuông. Tam giác \(SAB\) là tam giác đều nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Trong số các mặt phẳng chứa mặt đáy và các mặt bên của hình chóp, có bao nhiêu mặt phẳng vuông góc với mặt phẳng \((SAB)\)?

A. \(1\). 
B. \(2\). 
C. \(3\). 
D. \[4\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Trong số các mặt phẳng chứa mặt đáy và các mặt bên của hình chóp, có bao nhiêu mặt phẳng vuông góc với mặt phẳng (SAB)? (ảnh 1)

Có \(\left( {SAB} \right) \bot \left( {ABCD} \right)\).

Gọi \(H\) là trung điểm của \(AB\).

Vì \(\Delta SAB\) đều nên \(SH \bot AB\) mà \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SH \bot \left( {ABCD} \right)\).

Suy ra \(SH \bot BC,SH \bot AD\).

Do \(ABCD\) là hình vuông nên \(BC \bot AB\) và \(AD \bot AB\).

Vì \(SH \bot BC\) và \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\).

Vì \(SH \bot AD\) và \(AD \bot AB\) nên \[AD \bot \left( {SAB} \right) \Rightarrow \left( {SAD} \right) \bot \left( {SAB} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

 Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ. Tính thể tích của khối chóp S.ABCD. (ảnh 1)

Ta có: \[{S_{ABCD}} = AB.AD = 2{a^2}\].

Gọi M là trung điểm của AB, khi đó

\[SM \bot AB \Rightarrow SM \bot \left( {ABCD} \right)\].

Do đó \[\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,MC} \right) = \widehat {SCM} = 45^\circ \].

Khi đó \[SM = MC = \sqrt {B{C^2} + B{M^2}}  = \sqrt {4{a^2} + \frac{{{a^2}}}{4}}  = \frac{{a\sqrt {17} }}{2}\].

Vậy \[{V_{S.ABCD}} = \frac{1}{3}SM.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt {17} }}{2}.2{a^2} = \frac{{{a^3}\sqrt {17} }}{3}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Nếu việc xảy ra hay không xảy ra của biến cố này không ảnh hưởng đến xác suất xảy ra của biến cố kia thì hai biến cố \(A\) và \(B\) được gọi là độc lập với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(A \cup B = \Omega .\)  
B. \(B \subset A.\) 
C. \(A \cap B = \emptyset .\) 
D. \(A = B.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP