Cho hình chóp \(S.ABCD\) có đáy \(ABCD\)là hình vuông. Tam giác \(SAB\) là tam giác đều nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Trong số các mặt phẳng chứa mặt đáy và các mặt bên của hình chóp, có bao nhiêu mặt phẳng vuông góc với mặt phẳng \((SAB)\)?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Có \(\left( {SAB} \right) \bot \left( {ABCD} \right)\).
Gọi \(H\) là trung điểm của \(AB\).
Vì \(\Delta SAB\) đều nên \(SH \bot AB\) mà \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SH \bot \left( {ABCD} \right)\).
Suy ra \(SH \bot BC,SH \bot AD\).
Do \(ABCD\) là hình vuông nên \(BC \bot AB\) và \(AD \bot AB\).
Vì \(SH \bot BC\) và \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\).
Vì \(SH \bot AD\) và \(AD \bot AB\) nên \[AD \bot \left( {SAB} \right) \Rightarrow \left( {SAD} \right) \bot \left( {SAB} \right)\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có \({a^2}{b^3} = 16\)
\( \Leftrightarrow {\log _2}{a^2}{b^3} = {\log _2}16\)
\( \Leftrightarrow {\log _2}{a^2} + {\log _2}{b^3} = 4\)
\( \Leftrightarrow 2{\log _2}a + 3{\log _2}b = 4\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Áp dụng công thức \({A_n} = {A_0}{\left( {1 + r} \right)^n}\) với \(n\) là số kỳ hạn, \({A_0}\) là số tiền ban đầu, \({A_n}\) là số tiền có được sau \(n\) kỳ hạn, \(r\) là lãi suất.
Suy ra \({A_9} = {A_0}{\left( {1 + r} \right)^9} \Rightarrow r = \sqrt[9]{{\frac{{{A_9}}}{{{A_0}}}}} - 1 = \sqrt[9]{{\frac{{61758000}}{{58000000}}}} - 1 \approx 0,7\% \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

