Cho đường thẳng \(d:5x + 3y - 8 = 0\). Một vectơ chỉ phương của đường thẳng \(d\) có tọa độ là
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Đường thẳng \(d:5x + 3y - 8 = 0\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {5;\,\,3} \right)\).
Do đó, nó có một vectơ chỉ phương là \(\overrightarrow u = \left( {3;\,\, - 5} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ điều kiện ta có \({x^2} + {y^2} = \frac{{{{\left( {x + y} \right)}^2} + {{\left( {x - y} \right)}^2}}}{2} = 5 - {z^2} \Rightarrow {\left( {x + y} \right)^2} = 10 - 2{z^2} - {\left( {3 - z} \right)^2}\).
Do đó \({\left( {x + y} \right)^2} = 1 + 6z - 3{z^2}\).
Dễ thấy \(z \ne - 2\). Ta có \(P.\left( {z + 2} \right) + 2 = x + y\).
Do đó \({\left[ {P.\left( {z + 2} \right) + 2} \right]^2} = 1 + 6z - 3{z^2}\)
\( \Leftrightarrow {\left( {z + 2} \right)^2}{P^2} + 4\left( {z + 2} \right)P + 4 = 1 + 6z - 3{z^2}\)
\( \Leftrightarrow \left( {{P^2} + 3} \right){z^2} + \left( {4{P^2} + 4P - 6} \right)z + 4{P^2} + 8P + 3 = 0\)
Phương trình ẩn \(z\) có nghiệm khi và chỉ khi \({\Delta '_z} \ge 0\)
\( \Leftrightarrow {\left( {2{P^2} + 2P - 3} \right)^2} - \left( {{P^2} + 3} \right)\left( {4{P^2} + 8P + 3} \right) \ge 0\)
\( \Leftrightarrow 4{P^4} + 4{P^2} + 9 + 8{P^3} - 12{P^2} - 12P - \left( {4{P^4} + 8{P^3} + 3{P^2} + 12{P^2} + 24P + 9} \right) \ge 0\)
\( \Leftrightarrow 23{P^2} + 36P \le 0\)
\( \Leftrightarrow - \frac{{36}}{{23}} \le P \le 0\) (áp dụng định lí về dấu của tam thức bậc hai).
Ta có \(P = 0\) khi \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\] và \(P = - \frac{{36}}{{23}}\) khi \(x = \frac{{20}}{{31}},\,\,y = - \frac{{66}}{{31}},\,\,z = \frac{7}{{31}}\).
Vậy giá trị lớn nhất của \(P\) là 0 tại \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\].
Câu 2
Lời giải
Đáp án đúng là: A
Công thức ở các đáp án A: \({x^2} + y = 3\), với mỗi giá trị của \(x\), ta tìm được một giá trị của \(y\) tương ứng. Do đó, công thức này biểu diễn \(y\) là hàm số của \(x\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[{d_1}\] và \({d_2}\) song song với nhau;
B. \[{d_1}\] và \({d_2}\) trùng nhau;
C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( C \right)\) có tâm \(I\left( { - 1;\,\,3} \right)\);
B. \(\left( C \right)\) có bán kính \(R = 5\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.