Câu hỏi:

16/01/2026 42 Lưu

Góc tạo bởi hai đường thẳng \({d_1}:2x + 2\sqrt 3 y + 5 = 0\) và \({d_2}:y - 6 = 0\) bằng

A. \(90^\circ \);          
B. \(60^\circ \);              
C. \(45^\circ \);          
D. \(30^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Gọi \(\varphi \) là góc giữa hai đường thẳng đã cho.

Đường thẳng \({d_1}:2x + 2\sqrt 3 y + 5 = 0\) có một vectơ pháp tuyến  là \(\overrightarrow {{n_1}}  = \left( {2;\,2\sqrt 3 } \right)\).

Đường thẳng \({d_2}:y - 6 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {0;\,\,1} \right)\).

Ta có: \(\cos \varphi  = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_1}} } \right|}} = \frac{{\left| {2.0 + 2\sqrt 3 .1} \right|}}{{\sqrt {{2^2} + {{\left( {2\sqrt 3 } \right)}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{2\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{2}\). Vậy \(\varphi  = 30^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giá trị nhỏ nhất của hàm số \(y = {x^2} + 2mx + 5\) bằng 1 khi giá trị của tham số \(m\) là

A. \(m =  \pm 2\);       
B. \(m =  \pm 4\);           
C. \(m = 4\);               
D. Không có \(m\).

Lời giải

Đáp án đúng là: A

Hàm số \(y = {x^2} + 2mx + 5\) có \(a = 1 > 0\) nên hàm số đạt giá trị nhỏ nhất khi \(x =  - \frac{b}{{2a}} =  - \frac{{2m}}{{2.1}} =  - m\).

Theo bài ra ta có: \(y\left( { - m} \right) = 1 \Leftrightarrow {\left( { - m} \right)^2} + 2m.\left( { - m} \right) + 5 = 1 \Leftrightarrow {m^2} = 4 \Leftrightarrow m =  \pm 2\).

Câu 2

A. 5;                          
B. 6;                              
C. 7;                           
D. 8.

Lời giải

Đáp án đúng là: B

Xét tam thức \(f\left( x \right) = 2{x^2} - 3x - 15\) có hai nghiệm là \({x_1} = \frac{{3 - \sqrt {129} }}{4}\), \({x_2} = \frac{{3 + \sqrt {129} }}{4}\).

Mặt khác có hệ số \(a = 2 > 0\), do đó ta có bảng xét dấu sau:

\(x\)

\( - \infty \)                \(\frac{{3 - \sqrt {129} }}{4}\)              \(\frac{{3 + \sqrt {129} }}{4}\)                 \( + \infty \)

\(f\left( x \right)\)

           +             0            –           0           +

 Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) = 2{x^2} - 3x - 15 \le 0\)\( \Leftrightarrow x \in \left[ {\frac{{3 - \sqrt {129} }}{4};\,\,\frac{{3 + \sqrt {129} }}{4}} \right]\).

Do đó, bất phương trình đã cho có 6 nghiệm nguyên là – 2; – 1; 0; 1; 2; 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau:

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau: (ảnh 1)

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng

A. \(\left( {0;\,\,1} \right)\);                              
B. \(\left( {1;\,\,3} \right)\);  
C. \(\left( {3;\,\,5} \right)\);                     
D. \(\left( {0;\,\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP