(1,5 điểm)
Khối lượng (đơn vị: gam) của 30 củ khoai tây thu hoạch được ở gia đình bác Ngọc là:
\[90\]
\[73\]
\[88\]
\[93\]
\[101\]
\[104\]
\[111\]
\[95\]
\[78\]
\[95\]
\[81\]
\[97\]
\[96\]
\[92\]
\[95\]
\[83\]
\[90\]
\[101\]
\[103\]
\[117\]
\[109\]
\[110\]
\[112\]
\[87\]
\[75\]
\[90\]
\[82\]
\[97\]
\[86\]
\[96\]
a)Hãy ghép các số liệu trên thành năm nhóm sau\[\left[ {70;80} \right),\,\,\left[ {80;90} \right),\,\,\left[ {90;100} \right),\,\,\left[ {100;110} \right),\,\,\left[ {110;120} \right).\]Tìm tần số của mỗi nhóm đó.
b) Lập bảng tần số ghép nhóm của mẫu số liệu ghép nhóm đó.
Khối lượng (đơn vị: gam) của 30 củ khoai tây thu hoạch được ở gia đình bác Ngọc là:
|
\[90\] |
\[73\] |
\[88\] |
\[93\] |
\[101\] |
\[104\] |
\[111\] |
\[95\] |
\[78\] |
\[95\] |
|
\[81\] |
\[97\] |
\[96\] |
\[92\] |
\[95\] |
\[83\] |
\[90\] |
\[101\] |
\[103\] |
\[117\] |
|
\[109\] |
\[110\] |
\[112\] |
\[87\] |
\[75\] |
\[90\] |
\[82\] |
\[97\] |
\[86\] |
\[96\] |
a)Hãy ghép các số liệu trên thành năm nhóm sau\[\left[ {70;80} \right),\,\,\left[ {80;90} \right),\,\,\left[ {90;100} \right),\,\,\left[ {100;110} \right),\,\,\left[ {110;120} \right).\]Tìm tần số của mỗi nhóm đó.
b) Lập bảng tần số ghép nhóm của mẫu số liệu ghép nhóm đó.
Quảng cáo
Trả lời:
a) Các nhóm \[\left[ {70;80} \right),\,\,\left[ {80;90} \right),\,\,\left[ {90;100} \right),\,\,\left[ {100;110} \right),\,\,\left[ {110;120} \right).\]) có tần số lần lượt là: \[n{}_1\, = \,3\], , \[n{}_2\, = \,6\], \[{n_3}\, = \,12\], \[{n_4}\, = \,5\], \[n{}_5\, = \,4\].
b)
|
Nhóm |
Tần số \[\left( n \right)\] |
|
\[\left[ {70\,;\,80} \right)\] |
\[3\] |
|
\[\left[ {80\,;\,90} \right)\] |
\[6\] |
|
\[\left[ {90\,;\,100} \right)\] |
\[12\] |
|
\[\left[ {100\,;\,110} \right)\] |
\[5\] |
|
\[\left[ {110\,;\,120} \right)\] |
\[4\] |
Câu hỏi cùng đoạn
Câu 2:
Một bó hoa gồm \[3\] bông hoa màu đỏ và \[1\] bông hoa màu vàng. Bạn Trúc Linh chọn ngẫu nhiên \[2\] bông hoa từ bó hoa đó.
a) Liệt kê các cách chọn mà bạn Trúc Linh thực hiện.
b) Tính xác suất của mỗi biến cố sau:
\[R\]: “Trong \[2\] bông hoa được chọn, có đúng \[1\] bông hoa màu đỏ”;
\[T\]: “Trong \[2\] bông hoa được chọn, có ít nhất \[1\] bông hoa màu đỏ”.
Một bó hoa gồm \[3\] bông hoa màu đỏ và \[1\] bông hoa màu vàng. Bạn Trúc Linh chọn ngẫu nhiên \[2\] bông hoa từ bó hoa đó.
a) Liệt kê các cách chọn mà bạn Trúc Linh thực hiện.
b) Tính xác suất của mỗi biến cố sau:
\[R\]: “Trong \[2\] bông hoa được chọn, có đúng \[1\] bông hoa màu đỏ”;
\[T\]: “Trong \[2\] bông hoa được chọn, có ít nhất \[1\] bông hoa màu đỏ”.
a) Các cách chọn có thể có là: đỏ \[1\] và vàng, đỏ \[2\] và vàng, đỏ \[3\] và vàng, đỏ \[1\] và đỏ \[2\], đỏ \[2\]và đỏ \[3\], đỏ \[1\] và đỏ \[3\].
b) Có \[3\] kết quả thuận lợi cho biến cố R là: đỏ \[1\] và vàng, đỏ \[2\] và vàng, đỏ \[3\] và vàng.
Vậy \(P\left( R \right) = \frac{3}{6} = \frac{1}{2}\).
Có tất cả \[4\] kết quả thuận lợi cho biến cố \[T\].
Vậy\(P\left( T \right) = \frac{4}{6} = \frac{2}{3}\) .
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
w Số tiền lãi sau \[1\] năm gửi ngân hàng là:
\[50\,000\,000\,\, \cdot \,\,\frac{7}{{100}}\, = \,3\,500\,000\] (đồng)
w Từ ngày \[1/1/2017\]ông Tư cho ngân hàng vay số tiền là:
\[50\,000\,000\,\, + \,3\,500\,000\,\, + \,\,26\,500\,000\,\, = \,\,80\,000\,000\] (đồng)
w Theo công thức lãi kép
Số tiền ông Tư sẽ rút cả vốn lẫn lãi vào ngày \[1/1/2019\]là:
\[80\,000\,000\,\, \cdot \,{\left( {1\, + \,\frac{{7,5}}{{100}}} \right)^2}\, = \,\,92\,450\,000\] (đồng)
Câu 2
Một thùng đựng nước có dạng hình trụ chiều cao là \[35\,cm\] đường kính đáy \[30\,cm\].
a) Tính thể tích của thùng.
b) Người ta sử dụng thùng trên để múc nước đổ vào một bể chứa có dung tích \(1\;{m^3}\). Hỏi cần phải đổ ít nhất bao nhiêu thùng thì đầy bể chứa ? Biết rằng mỗi lần xách người ta chỉ đổ đầy \(90{\rm{\% }}\) thùng để nước không đổ ra ngoài.

Một thùng đựng nước có dạng hình trụ chiều cao là \[35\,cm\] đường kính đáy \[30\,cm\].
a) Tính thể tích của thùng.
b) Người ta sử dụng thùng trên để múc nước đổ vào một bể chứa có dung tích \(1\;{m^3}\). Hỏi cần phải đổ ít nhất bao nhiêu thùng thì đầy bể chứa ? Biết rằng mỗi lần xách người ta chỉ đổ đầy \(90{\rm{\% }}\) thùng để nước không đổ ra ngoài.

Lời giải
a) Bán kính đáy hình trụ là \(R = 30\,\,:2 = 15\,\left( {cm} \right)\).
Thể tích trụ: \(V = \pi {R^2}h = \pi \,.\,{15^2}.\,35 = 7875\pi \approx 24728\,\left( {c{m^3}} \right)\)
b) Thể tích nước mỗi lần xách là: \(24728\,.\,90\% = 22255\,\left( {c{m^3}} \right) = 0,022255\,\left( {{m^3}} \right)\).
Số thùng ít nhất cần đổ để đầy bể là:\(1\,\,:\,\,0,022255\,\, = \,\,44,9337..\) nên số thùng cần là \[45\] thùng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
