(1,5 điểm)
Cho biểu thức \(A = \frac{{x + 2\sqrt x + 5}}{{\sqrt x - 3}}\)(với \(x \ge 0;x \ne 9\)).Tính giá trị của \(A\) khi \(x = 16.\)
Cho biểu thức \(A = \frac{{x + 2\sqrt x + 5}}{{\sqrt x - 3}}\)(với \(x \ge 0;x \ne 9\)).Tính giá trị của \(A\) khi \(x = 16.\)
Quảng cáo
Trả lời:
Ta có \(x = 16\) (thỏa mãn điều kiện), thay vào biểu thức \(A\) ta có:
\(A = \frac{{16 + 2\sqrt {16} + 5}}{{\sqrt {16} - 3}} = \frac{{29}}{1} = 29\)
Vậy khi \(x = 16\) thì \(A = 29\)
Câu hỏi cùng đoạn
Câu 2:
Cho biểu thức: \(P = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{x + \sqrt x - 6}} - \frac{1}{{\sqrt x - 2}}\) (với \(x \ge 0;x \ne 4\))
a) Chứng minh \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\).
b) Tìm tất cả các giá trị của \[x\] để \({P^2} > P\).
Cho biểu thức: \(P = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{x + \sqrt x - 6}} - \frac{1}{{\sqrt x - 2}}\) (với \(x \ge 0;x \ne 4\))
a) Chứng minh \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\).
b) Tìm tất cả các giá trị của \[x\] để \({P^2} > P\).
a) Ta có \(P = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{x + \sqrt x - 6}} - \frac{1}{{\sqrt x - 2}}\)
\( = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} - \frac{1}{{\sqrt x - 2}}\)
\( = \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right) - 5 - \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{x - 4 - 5 - \sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x - \sqrt x - 12}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\)
Vậy khi \(x \ge 0;x \ne 4\), thì \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\)(điều phải chứng minh).
b) Ta có \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\) với điều kiện \(x \ge 0;x \ne 4\)
+ Để \({P^2} > P\) thì \(P\left( {P - 1} \right) > 0\)
\(\frac{{\sqrt x - 4}}{{\sqrt x - 2}}.\left( {\frac{{\sqrt x - 4}}{{\sqrt x - 2}} - 1} \right) > 0\) hay \(\frac{{ - 2\left( {\sqrt x - 4} \right)}}{{{{\left( {\sqrt x - 2} \right)}^2}}} > 0\)
\( - 2\left( {\sqrt x - 4} \right) > 0\) (vì \({\left( {\sqrt x - 2} \right)^2} > 0\,\,\forall x\) thỏa mãn điều kiện xác định)
\(\begin{array}{l}\sqrt x - 4 < 0\\x < 16\end{array}\)
Kết hợp với điều kiện ta được \(\left\{ \begin{array}{l}0 < x < 16\\x \ne 4\end{array} \right.\)
Vậy khi \(\left\{ \begin{array}{l}0 < x < 16\\x \ne 4\end{array} \right.\) thì \({P^2} > P\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ bảng tần số trên ta thấy có \(12\) học viên đạt điểm từ \(\left[ {7,5;10} \right)\).
Vậy có 12 học viên xếp loại \(A\).
Lời giải

Một bình đựng đầy nước có dạng hình nón (không có
Gọi r là bán kính khối cầu; \(R\) là bán kính khối nón; \(h\) là chiều cao khối nón
Ta có \(h = 2r\) (dm)
Theo đề bài ta có:
Thể tích nửa khối cầu là 18π (dm3)
Suy ra \(r = 3\) (dm) và \(h = 6\) (dm)
Xét tam giác \(OAB\) vuông tại \(O\) có đường cao \(OH\) nên \(R = \frac{{2\sqrt 3 }}{3}r = 2\sqrt 3 \) (dm)
Khi đó thể tích khối nón sẽ là \(24\pi \)(dm3)
Vậy thể tích nước còn lại trong bình là \(6\pi \)(dm3)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

