Câu hỏi:

29/12/2025 31 Lưu

(0,5 điểm) Công ty sữa muốn thiết kế bao bì đựng sữa với thể tích \(100\;{\rm{ml}}\). Bao bì được thiết kế bởi một trong hai mô hình là: Hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ. Hỏi thiết kế theo mô hình nào thì tiết kiệm nguyên vật liệu nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trường hợp 1. Nếu thiết kế bao bì dạng hình trụ.

 Ta gọi, \(R\): bán kính hình trụ; \(l\): chiều cao hình trụ

Thể tích của hình trụ là: \(V\, = \,\pi {R^2}l\, = \,100\,\left( {{\rm{ml}}} \right)\)

Diện tích toàn phần của hình trụ là: \({S_{tp}}\, = \,2\pi Rl\, + \,2\pi {R^2}\, = \,\pi Rl\, + \,\pi Rl\, + \,2\pi {R^2}\)

Áp dụng bất đẳng thức Cauchy cho ba số không âm: \(\pi Rl\,;\,\,\pi Rl\,;\,\,2\pi {R^2}\) ta được

\({S_{tp}}\,\, = \,\pi Rl\, + \,\pi Rl\, + \,2\pi {R^2}\, \ge \,3\sqrt[3]{{\pi Rl\,.\,\pi Rl\,.2\pi {R^2}}}\,\, = \,3\sqrt[3]{{2\pi \,\,.{{\left( {\pi {R^2}l} \right)}^2}}}\,\)    

\({S_{tp}} \ge \,\,3\sqrt[3]{{2\pi \,.\,{{100}^2}}}\, \approx \,119,27\)        \(\left( 1 \right)\)

Dấu \('' = ''\) xảy ra khi \(\pi Rl\, = \,\pi Rl\, = \,2\pi {R^2}\,\, \Leftrightarrow \,\,l\, = \,2R\)

Trường hợp 2. Nếu thiết kế bao bì dạng hình hộp chữ nhật có đáy là hình vuông

Ta gọi, \(a\) là độ dài cạnh đáy của hình hộp chữ nhật; \(h\)là chiều cao của hình hộp chữ nhật.

Thể tích của hình hộp chữ nhật là: \(V\,\, = \,{a^2}.h\, = \,100\,\;{\rm{ml}}\)

Diện tích toàn phần của hình hộp chữ nhật là: \({S_{tp}}\, = \,2{a^2}\, + \,4ah\, = \,2{a^2}\, + \,2ah\, + \,2ah\)

Áp dụng b.đ.t Cô-Si cho ba số không âm :\(2{a^2}\,;\,2ah\,;\,2ah\)ta được:

\({S_{tp}}\, = \,2{a^2}\, + \,2ah\, + \,2ah\,\, \ge \,3\sqrt[2]{{2{a^2}.2ah\,.\,2ah}}\, = \,3\sqrt[3]{{8{a^2}h.{a^2}h}}\)

\({S_{tp}}\, \ge \,3.2.\,\sqrt[3]{{{{100}^2}}}\, \approx \,\,129,27\,\,\,\,\,\,\,\)\(\left( 2 \right)\)

Từ (1) và (2) suy ra, thiết kế hộp sữa dạng hình trụ có chiều cao gấp 2 lần bán kính đáy thì tốn ít nguyên vật liệu nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích vải cần có để làm nên cái mũ gồm diện tích xung quanh của hình nón và diện tích của vành nón.

Bán kính đường tròn đáy của hình nón: \(r = \frac{{35 - 2.10}}{2} = 7,5\) (cm)

Diện tích xung quanh hình nón: \({S_{xq}} = \pi rl = \pi .7,5.30 = 225\pi \)(cm2)

Diện tích vành nón (hình vành khăn): \(\pi .{\left( {\frac{{35}}{2}} \right)^2} - \pi .{\left( {7,5} \right)^2} = 250\pi \) (cm2)

Diện tích vải cần để may: \(225\pi  + 250\pi  = 475\pi \)(cm2).

Vì tỉ lệ vải khâu (may) hao (tốn) khi may nón là \[15\% \]nên diện tích vải thực tế cần dùng là:

\(475\pi  + 15\% .475\pi  = 546,25\pi  \approx 546,25.3,14 = 1715,225\) (cm2).                 

Lời giải

Gọi x, y là số tiền phải trả cho mỗi loại hàng khi chưa tính thuế VAT (triệu đồng, x; y > 0)

* Khi tính thuế 10% và 8% lần lượt đối với mặt hàng thứ nhất và mặt hàng thứ hai thì số tiền phải trả cho loại hàng thứ nhất là \[x + 0,1x = 1,1x\] triệu đồng; số tiền phải trả cho loại hàng thứ hai là \[y + 0,08y = 1,08y\] triệu đồng

Tổng số tiền phải trả là \(2,17\)triệu đồng nên ta có phương trình \[1,1x + 1,08y = 2,17\]  (1)

* Khi tính thế \(9\% \) đối với cả hai loại hàng thì số tiền phải trả cho loại hàng thứ nhất là \[x + 0,09x = 1,09x\] triệu đồng và số tiền phải trả cho loại hàng thứ hai là \[y + 0,09y = 1,09y\] triệu đồng.

Tổng số tiền phải trả là \(2,18\) triệu đồng nên ta có phương trình \[1,09x + 1,09y = 2,18\]  (2)

Ta có hệ phương trình \(\left\{ \begin{array}{l}1,1x + 1,08y = 2,17\\1,09x + 1,09y = 2,18\end{array} \right.\)

Giải hệ ta được nghiệm duy nhất \(\left\{ \begin{array}{l}x = 0,5\\y = 1,5\end{array} \right.\) (thoả mãn)

Vậy khi chưa tính tiền thuế VAT thì giá của loại hàng thứ nhất là \[0,5\]triệu đồng và giá của loại hàng thứ hai là \[1,5\]triệu đồng