(0,5 điểm) Bác Nam muốn làm một cửa sổ khuôn gỗ, phía trên có dạng nửa hình tròn, phía dưới có dạng hình chữ nhật. Biết rằng đường kính của nửa hình tròn cũng là cạnh phía trên của hình chữ nhật và tổng độ dài của khuôn gỗ (các đường in đậm trong hình bên, bỏ qua độ rộng của cạnh khuôn gỗ) là 8m. Em hãy giúp bác An tính độ dài các cạnh của hình chữ nhật để cửa sổ có diện tích lớn nhất.
(0,5 điểm) Bác Nam muốn làm một cửa sổ khuôn gỗ, phía trên có dạng nửa hình tròn, phía dưới có dạng hình chữ nhật. Biết rằng đường kính của nửa hình tròn cũng là cạnh phía trên của hình chữ nhật và tổng độ dài của khuôn gỗ (các đường in đậm trong hình bên, bỏ qua độ rộng của cạnh khuôn gỗ) là 8m. Em hãy giúp bác An tính độ dài các cạnh của hình chữ nhật để cửa sổ có diện tích lớn nhất.

Quảng cáo
Trả lời:
Gọi đường kính của nửa hình tròn là \[x\,(m;\,\,0 < x < 8)\]
Khi đó bán kính: \[\frac{x}{2}\,(m)\]
Gọi cạnh còn lại của hình chữ nhật là \[y\,\,(m;\,0 < y < 8)\]
khi đó tổng độ dài của khuôn gỗ
\[\begin{array}{l}\frac{{\pi x}}{2} + x + 2y = 8\\\left( {\frac{\pi }{2} + 1} \right)x + 2y = 8\\y = 4 - \left( {\frac{{\pi + 2}}{4}} \right)x\end{array}\]
S cửa sổ \[S = \frac{1}{2}\pi .{\left( {\frac{x}{2}} \right)^2} + xy = \frac{{\pi {x^2}}}{8} + xy\]
\[\frac{{\pi {x^2}}}{8} + x\left[ {4 - \left( {\frac{{\pi + 2}}{4}} \right)x} \right]\]
= … = \[ - \frac{{\pi + 4}}{8}{\left( {x - \frac{{16}}{{\pi + 4}}} \right)^2} + \frac{{32}}{{\pi + 4}} \le \frac{{32}}{{\pi + 4}}\]
Dấu “=” xảy ra khi và chỉ khi \[x = \frac{{18}}{{\pi + 4}}\] nên \[y = \frac{8}{{\pi + 4}}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) (0,5 điểm) Tần số tương đối của các nhóm lần lượt là: \({f_1} = \frac{{8.100}}{{60}}\% = 13,33\% ;{f_2} = \frac{{18.100}}{{60}}\% = 30\% \)
\({f_3} = \frac{{24.100}}{{60}}\% = 40\% ;{f_4} = \frac{{10.100}}{{60}}\% = 16,67\% \)
b) (0,5 điểm) Bảng tần số tương đối ghép nhóm của mẫu số liệu ghép nhóm đó
|
Nhóm |
\(\left[ {10;20} \right)\) |
\(\left[ {20;30} \right)\) |
\(\left[ {30;40} \right)\) |
\[{\rm{[}}40;50]\] |
Cộng |
|
Tần số tương đối \(\left( \% \right)\) |
\[13,33\] |
\[30\] |
\[40\] |
\[16,67\] |
\(100\) |
c) (0,5 điểm)


Lời giải
Vì chỉ số của Zn và H ở hai bên phương trình phản ứng bằng nhau, nên ta chỉ quan tâm đến chỉ số của N và O
Theo định luật bảo toàn nguyên tố đối với N và O, ta có hệ phương trình:
\[\left\{ \begin{array}{l}4y = 2x + 2\\12y = 6x + 2 + 2y\end{array} \right.\] (0,25 điểm)
\[\left\{ \begin{array}{l}4y - 2x = 2\\10y - 6x = 2\end{array} \right.\]
\[\left\{ \begin{array}{l}2y - x = 1\,\,\,\,\,\,\,\,\left( 1 \right)\\5y - 3x = 1\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Nhân \[2\] vế pt \[\left( 1 \right)\]với \[3\] ta được hệ pt: \[\left\{ \begin{array}{l}6y - 3x = 3\,\,\,\,\,\,\,\,\\5y - 3x = 1\,\,\,\,\,\,\end{array} \right.\]
Trừ từng vế \[2\] pt trên ta được \[y = 2\]
Thay \[y = 2\] vào pt \[\left( 1 \right)\]ta được \[x = 3\]
Vậy ta có phương trình sau cân bằng \[3Zn + 8HN{O_3} \to 3Zn{(N{O_3})_2} + 2NO + 4{H_2}O\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
