Câu hỏi:

29/12/2025 50 Lưu

(0,5 điểm) Người ta cần làm một cái bồn chứa dạng hình trụ có thể tích \[1000\]lít bằng inox để chứa nước, tính bán kính của hình trụ đó sao cho diện tích toàn phần của bồn chứa đó là nhỏ nhất

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đổi  \[1000\] lít =  \[1\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\]

Ta có thể tích của bể nước là

\[V = \pi {R^2}h = 1\]vậy \[h = \frac{1}{{\pi {R^2}}}\]

Khi đó diện tích toàn phần của hình trụ là  \[{S_{tp}} = 2\pi Rh + 2\pi {R^2}\]

Hay   \[{S_{tp}} = 2\pi R\frac{1}{{\pi {R^2}}} + 2\pi {R^2}\]

 \[{S_{tp}} = \frac{2}{R} + 2\pi {R^2}\left( {R > 0} \right)\]

Áp dụng bài toán phụ số 2: Với ba số không âm \(a;b;c\) thì \[a + b + c \ge 3\sqrt[3]{{abc}}\]

 ta có

   \[{S_{tp}} = \frac{2}{R} + 2\pi {R^2} = \frac{1}{R} + \frac{1}{R} + 2\pi {R^2}\]\[ \ge 3\sqrt[3]{{2\pi {R^2}\; \cdot \,\frac{1}{R}\; \cdot \,\frac{1}{R}}}\]\[ = 3\sqrt[3]{{2\pi }}\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]

Vậy diện tích toàn phần nhỏ nhất khi và chỉ khi \[R = \sqrt[3]{{\frac{1}{{2\pi }}}}\,\,\left( {\rm{m}} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi: \[{\rm{60 cm\;}} = {\rm{6 dm}}\] ; \[{\rm{120 cm\;}} = {\rm{12 dm}}\]

Bán kính đường tròn đáy hình nón là: \[{\rm{6 : 2}} = 3{\rm{ }}\left( {{\rm{dm}}} \right)\]

Thể tích phần nửa hình cầu là: \({V_1} = \frac{{\rm{1}}}{{\rm{2}}}{\rm{ }} \cdot {\rm{ }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{ }}{\rm{. \pi  }}{\rm{. }}{r^3} = \frac{{\rm{2}}}{{\rm{3}}}{\rm{ }}{\rm{. \pi  }}{\rm{. }}{{\rm{3}}^{\rm{3}}} = {\rm{18\pi  }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\)

Thể tích phần hình nón là: \({V_2} = \frac{{\rm{1}}}{{\rm{3}}}{\rm{\pi }}{{\rm{r}}^{\rm{2}}}{\rm{h}}\)\[ = \frac{{\rm{1}}}{{\rm{3}}}{\rm{ }}{\rm{. \pi  }}{\rm{. }}{{\rm{3}}^{\rm{2}}}{\rm{ }}{\rm{. 12}} = 36{\rm{\pi  }}\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\]

Thể tích của mô hình là: \(V = {V_1} + {V_2} = {\rm{18\pi }} + {\rm{36\pi }} = 54{\rm{\pi }} \approx 169,6{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^3}} \right)\)

Vậy thể tích của mô hình là \({\rm{169}}{\rm{,6 d}}{{\rm{m}}^3}\).