Câu hỏi:

28/12/2025 7 Lưu

Một hộp chứa \(1\) viên bi xanh, \(1\) viên bi đỏ và \(1\) viên bi trắng. Các viên bi có cùng kích thước và khối lượng. An lần lượt lấy ra ngẫu nhiên từng viên bi từ trong hộp cho đến khi hết bi.

a. Xác định không gian mẫu của phép thử.

b. Tính xác suất của mỗi biến cố sau:

A: “Viên bi màu đỏ được lấy ra sau cùng”.

B: “Viên bi màu trắng được lấy ra trước viên bi màu đỏ”.

C: “Viên bi lấy ra đầu tiên không phải màu xanh”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a. Không gian mẫu của phép thử là:

.

Không gian mẫu có \[{\rm{6}}\]phần tử.

b. Vì các viên bi có cùng kích thước và khối lượng nên các kết quả là đồng khả năng.

+ Có \[{\rm{2}}\] kết quả thuận lợi cho biến cố \[{\rm{A}}\] là: .

Xác suất của biến cố \[{\rm{A}}\]là \(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).

+ Có \[3\] kết quả thuận lợi cho biến cố \[{\rm{B}}\] là: .

 Xác suất của biến cố \[{\rm{B}}\] là \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\).

+ Có \[{\rm{4}}\] kết quả thuận lợi cho biến cố \[{\rm{C}}\] là: .

 Xác suất của biến cố \[{\rm{C}}\] là \(P\left( C \right) = \frac{4}{6} = \frac{2}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi dân số nội thành và ngoại thành lần lượt là \[{\rm{a}}{\rm{,}}\;{\rm{b}}\](\[0 < a,b < 420\], nghìn người)

Ta có: dân số của một tỉnh hay tổng của \[{\rm{a}}\] và \[{\rm{b}}\]là \[{\rm{420}}\] nghìn người nên \[a + b = 420\]

Dân số nội thành là: \[100,8\% a{\rm{ }} = {\rm{ }}1,008a\](người)

Dân số ngoại thành là: \[101,1\% b{\rm{ }} = {\rm{ }}1,011b\](người)

Vì sau một năm dân số toàn tỉnh sẽ tăng 1% nên ta có pt:

\[1,008a\; + {\rm{ }}1,011b\; = {\rm{ }}420{\rm{ }}.101\% \]

\[1,008a\; + {\rm{ }}1,011b\; = {\rm{ }}424,2\]

Ta có hệ phương trình: \[\left\{ \begin{array}{l}a + b = 420\\1,008a\; + {\rm{ }}1,011b\; = {\rm{ }}424,2\end{array} \right.\]

Giải hệ phương trình ta được: \[a = 140;{\rm{ }}b = 280\] 

Vậy dân số nội thành là \[{\rm{140}}\] nghìn người, dân số ngoại thành là \[{\rm{280}}\] nghìn người.

Lời giải

Với \(x,y,z \ge 0\)

Ta đi chứng minh: \({x^3} + {y^3} + {z^3} \ge 3xyz\)

\({x^3} + 3{x^2}y + 3x{y^2} + {y^3} - 3{x^2}y - 3x{y^2} + {z^3} - 3xyz \ge 0\)

\({\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) + {z^3} - 3xyz \ge 0\)

\({\left( {x + y} \right)^3} + {z^3} - 3xy\left( {x + y} \right) - 3xyz \ge 0\)

\(\left( {x + y + z} \right)\left[ {{{\left( {x + y} \right)}^2} - \left( {x + y} \right)z + {z^2}} \right] - 3xy\left( {x + y + z} \right) \ge 0\)

\(\left( {x + y + z} \right)\left[ {{x^2} + 2xy + {y^2} - xz - yz + {z^2}} \right] - 3xy\left( {x + y + z} \right) \ge 0\)

\(\left( {x + y + z} \right)\left( {{x^2} + 2xy + {y^2} - xz - yz + {z^2} - 3xy} \right) \ge 0\)

\(\left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - xz - yz} \right) \ge 0\)

\(2\left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - xz - yz} \right) \ge 0\)

\(\left( {x + y + z} \right)\left( {2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2xz - 2yz} \right) \ge 0\)

\(\left( {x + y + z} \right)\left( {{x^2} - 2xy + {y^2} + {x^2} - 2xz + {z^2} + {y^2} - 2yz + {z^2}} \right) \ge 0\)

\(\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {x - z} \right)}^2} + {{\left( {y - z} \right)}^2}} \right] \ge 0\) (Luôn đúng với mọi \(x,y,z \ge 0\))

Vậy nên \({x^3} + {y^3} + {z^3} \ge 3xyz\)

 Gọi cạnh hình vuông nhỏ là \(x(m,0 < x < 1)\)

Chiều cao của hình hộp là \(x\) (m) 

Chiều dài, chiều rộng của hộp hình hộp là \(1 - 2x\) (m)

Thể tích của hộp hình lập phương khi đó là:  \(({m^3})\)

\(x.(1 - 2x)(1 - 2x)\)\( = \frac{1}{4}.4x.(1 - 2x)(1 - 2x)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(4x.(1 - 2x)(1 - 2x) \le {\left( {\frac{{4x + 1 - 2x + 1 - 2x}}{3}} \right)^3}\)

\(\frac{1}{4}.4x.(1 - 2x)(1 - 2x) \le \frac{1}{4}{\left( {\frac{{4x + 1 - 2x + 1 - 2x}}{3}} \right)^3}\)

\(\frac{1}{4}.4x.(1 - 2x)(1 - 2x) \le \frac{1}{4}.{\left( {\frac{2}{3}} \right)^3} = \frac{2}{{27}}\)

Dấu bằng xảy ra khi \[4x = 1 - 2x\]

\[6x = 1\]

\(x = \frac{1}{6}(TM)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP