Câu hỏi:

30/12/2025 34 Lưu

Trong một hộp có \[100\] tấm thẻ được đánh số từ \[101\] đến \[200\] (mỗi tấm thẻ được đánh một số khác nhau). Lấy ngẫu nhiên đồng thời \[3\] tấm thẻ trong hộp. Tính xác suất để tổng các số ghi trên \[3\] tấm thẻ đó là một số chia hết cho \[3\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Từ \[101\] đến \[200\] có \[100\] số gồm \[33\] số chia hết cho \[3\], \[33\] số chia cho \[3\] dư \[1\], và \[34\] số chia cho \[3\] dư \[2\].

Ta có \(n\left( \Omega  \right) = C_{100}^3\).

\[A\] là biến cố: “Tổng các số ghi trên \[3\] tấm thẻ đó là một số chia hết cho \[3\]”.

TH1: Cả 3 số lấy được đều chia hết cho 3.

TH2: Cả 3 số lấy được đều chia 3 dư 1.

TH3: Cả 3 số lấy được đều chia 3 dư 2.

TH4: 3 số lấy được có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Khi đó \(n\left( A \right) = 2C_{33}^3 + C_{34}^3 + C_{34}^1C_{33}^1C_{33}^1\).

Suy ra \(P\left( A \right) = \frac{{817}}{{2450}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \({\log _{40}}75 = \frac{{{{\log }_2}75}}{{{{\log }_2}40}} = \frac{{{{\log }_2}3 + 2{{\log }_2}5}}{{{{\log }_2}40}} = \frac{{{{\log }_2}3 + 2\left( {{{\log }_2}40 - 3} \right)}}{{{{\log }_2}40}} = 2 + \frac{{{{\log }_2}3 - 6}}{{3 + {{\log }_2}5}}\).

Suy ra: \(a = 2,\,b = 6,\,c = 3\). Vậy \(abc = 2.6.3 = 36\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Có \[P(A).P(B) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} \ne P(AB) = \frac{1}{2}\].

Do đó \(A\) và \(B\) không độc lập.

Câu 3

A. \[P = {x^{\frac{1}{8}}}\].  
B. \[P = {x^2}\]. 
C. \[P = \sqrt x \].  
D. \[P = {x^{\frac{2}{9}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(90^\circ \).     
B. \(60^\circ \).     
C. \(30^\circ \).
D. \(45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\ln \left( {a + b} \right) = \ln a + \ln b\).
B. \(\ln \left( {ab} \right) = \ln a.\ln b\).
C. \(\ln \left( {{a^b}} \right) = \ln b.\ln a\).  
D. \(\ln \left( {ab} \right) = \ln a + \ln b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP