Câu hỏi:

30/12/2025 56 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot (ABCD),\)\(AB = a\) và \(SB = \sqrt 2 a.\) Khoảng cách từ điểm \(S\) đến mặt phẳng \((ABCD)\) bằng

A. \(a.\)
B. \(\sqrt 2 a.\)    
C. \(2a.\) 
D. \(\sqrt 3 a.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc (ABCD), AB = a và SB = căn bậc hai 2 a. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng  (ảnh 1)

Vì \(SA \bot \left( {ABCD} \right)\) nên \(d\left( {S,\left( {ABCD} \right)} \right) = SA\).

Xét \(\Delta SAB\) vuông tại \(A,\) có \(SA = \sqrt {S{B^2} - A{B^2}}  = \sqrt {2{a^2} - {a^2}}  = a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \[A\] và \[B\]là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = 0,3\).

Có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,5 + 0,3 - 0,15 = 0,65.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Trước tiên, ta tìm tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này.

Từ giả thiết, ta có: \(300 = 100.{e^{5r}} \Leftrightarrow {e^{5r}} = 3 \Leftrightarrow 5r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{5} \approx 0,2197\).

Tức là tỉ lệ tăng trưởng của loại vi khuẩn này là 21,97% mỗi giờ.

Từ 100 con để có 200 con thì thời gian cần thiết là bao nhiêu?

Ta có \(200 = 100.{e^{rt}} \Leftrightarrow rt = \ln 2 \Leftrightarrow t = \frac{{\ln 2}}{r} = \frac{{\ln 2}}{{\frac{{\ln 3}}{5}}} \approx 3,15\) (giờ) = 3 giờ 9 phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP