Cho hình chóp \[S.ABC\] có \[SA\] vuông góc với đáy; \[SA = a\sqrt 3 \]. Tam giác\[ABC\] đều cạnh \[a\]. Gọi \[I\]là trung điểm của \[AB\].
a) Chứng minh \(\left( {SAB} \right) \bot \left( {ABC} \right)\).
b) Tính khoảng cách \[SB\] và \[CI\].
Cho hình chóp \[S.ABC\] có \[SA\] vuông góc với đáy; \[SA = a\sqrt 3 \]. Tam giác\[ABC\] đều cạnh \[a\]. Gọi \[I\]là trung điểm của \[AB\].
a) Chứng minh \(\left( {SAB} \right) \bot \left( {ABC} \right)\).
b) Tính khoảng cách \[SB\] và \[CI\].
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Vì \(\Delta ABC\) đều, \(I\) là trung điểm của \(AB\) nên \(CI \bot AB\).
Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CI\).
Ta có: \(CI \bot AB\) và \(CI \bot SA\)
\( \Rightarrow CI \bot \left( {SAB} \right)\)\( \Rightarrow \left( {ABC} \right) \bot \left( {SAB} \right)\).
b) Trong \(\left( {SAB} \right)\) kẻ \(IH \bot SB\) tại \(H\).
Ta có \(\left\{ \begin{array}{l}IH \bot SB\\IH \bot CI{\rm{ }}\left( {CI \bot \left( {SAB} \right)} \right)\end{array} \right. \Rightarrow d\left( {SB;CI} \right) = IH\).
Ta có \(IB = \frac{a}{2};SB = \sqrt {S{A^2} + A{B^2}} = 2a\).
\(\Delta IHB\) vuông tại \(H\) nên:\(IH = IB.\sin \widehat {IBH} = \frac{a}{2}.\frac{{SA}}{{SB}} = \frac{a}{2}.\frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 a}}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì \[A\] và \[B\]là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = 0,3\).
Có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,5 + 0,3 - 0,15 = 0,65.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Trước tiên, ta tìm tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này.
Từ giả thiết, ta có: \(300 = 100.{e^{5r}} \Leftrightarrow {e^{5r}} = 3 \Leftrightarrow 5r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{5} \approx 0,2197\).
Tức là tỉ lệ tăng trưởng của loại vi khuẩn này là 21,97% mỗi giờ.
Từ 100 con để có 200 con thì thời gian cần thiết là bao nhiêu?
Ta có \(200 = 100.{e^{rt}} \Leftrightarrow rt = \ln 2 \Leftrightarrow t = \frac{{\ln 2}}{r} = \frac{{\ln 2}}{{\frac{{\ln 3}}{5}}} \approx 3,15\) (giờ) = 3 giờ 9 phút.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.