Viết khai triển theo công thức nhị thức Newton của biểu thức \[{\left( {3x - y} \right)^4}\].
Viết khai triển theo công thức nhị thức Newton của biểu thức \[{\left( {3x - y} \right)^4}\].
A. \[81{x^4} - 108{x^3}y + 54{x^2}{y^2} - 12x{y^3} + {y^4}\];
B. \[81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\];
C. \[81{x^4} + 108{x^3}y - 54{x^2}{y^2} + 12x{y^3} - {y^4}\];
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có:
\[{\left( {3x - y} \right)^4} = {\left( {3x} \right)^4} + 4.{\left( {3x} \right)^3}.\left( { - y} \right) + 6.{\left( {3x} \right)^2}.{\left( { - y} \right)^2} + 4.3x.{\left( { - y} \right)^3} + {\left( { - y} \right)^4}\]
\[ = 81{x^4} - 108{x^3}y + 54{x^2}{y^2} - 12x{y^3} + {y^4}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Số cách sắp xếp ba hành khách ngồi theo hướng tàu chạy là \[A_4^3.\]
Số cách sắp xếp hai hành khách ngồi ngược hướng tàu chạy là \[A_4^2.\]
Số cách sắp xếp ba hành khách còn lại là \[3!.\]
Vậy cách xếp chỗ để thỏa mãn các yêu cầu của hành khách là \[A_4^3.A_4^2.3! = 1728\] cách.
Câu 2
A. \[{d_1}\] và \({d_2}\) song song với nhau;
B. \[{d_1}\] và \({d_2}\) trùng nhau;
C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;
Lời giải
Đáp án đúng là: C
Đường thẳng \({d_1}:2x + 3y - 19 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 22 + 2t\\y = 55 + 5t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {2;\,\,5} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {5;\, - 2} \right)\).
Ta thấy \(\frac{2}{5} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 2.5 + 3.\left( { - 2} \right) = 4 \ne 0\).
Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Trong mặt phẳng tọa độ \(Oxy\), cho vectơ \(\overrightarrow a = - 2\overrightarrow i + 4\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.