Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:x + 2y - 6 = 0\). Phương trình tham số của đường thẳng \(d\) là
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(d:x + 2y - 6 = 0\) nên đường thẳng này có một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\,2} \right)\). Do đó đường thẳng \(d\) có một vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,\, - 1} \right)\).
Lại có điểm \(A\left( {0;\,\,3} \right) \in d\). Vậy phương trình tham số của đường thẳng \(d\) là \(\left\{ \begin{array}{l}x = 2t\\y = 3 - t\end{array} \right.\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Số cách sắp xếp ba hành khách ngồi theo hướng tàu chạy là \[A_4^3.\]
Số cách sắp xếp hai hành khách ngồi ngược hướng tàu chạy là \[A_4^2.\]
Số cách sắp xếp ba hành khách còn lại là \[3!.\]
Vậy cách xếp chỗ để thỏa mãn các yêu cầu của hành khách là \[A_4^3.A_4^2.3! = 1728\] cách.
Câu 2
A. \[{d_1}\] và \({d_2}\) song song với nhau;
B. \[{d_1}\] và \({d_2}\) trùng nhau;
C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;
Lời giải
Đáp án đúng là: C
Đường thẳng \({d_1}:2x + 3y - 19 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 22 + 2t\\y = 55 + 5t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {2;\,\,5} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {5;\, - 2} \right)\).
Ta thấy \(\frac{2}{5} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 2.5 + 3.\left( { - 2} \right) = 4 \ne 0\).
Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Trong mặt phẳng tọa độ \(Oxy\), cho vectơ \(\overrightarrow a = - 2\overrightarrow i + 4\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.