Câu hỏi:

16/01/2026 23 Lưu

Trong mặt phẳng \(Oxy\), cho 3 điểm \[A\left( { - 2;1} \right),{\rm{ }}B\left( {4;3} \right),{\rm{ }}M\left( {x;y} \right)\].

a) Tìm tọa độ các vectơ \[\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB} ,{\rm{ }}\overrightarrow v  = \overrightarrow {MA}  - \overrightarrow {MB} \].

b) Gọi \(I\) là trung điểm của đoạn \(AB\). Tìm tập hợp các điểm \(M\) sao cho vectơ \(\overrightarrow u \) và vectơ \(\overrightarrow {OI} \) cùng phương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \[\overrightarrow {MA}  = \left( { - 2 - x;1 - y} \right)\] và \[\overrightarrow {MB}  = \left( {4 - x;3 - y} \right)\]

Do đó \[\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB}  = \left( {2 - 2x;4 - 2y} \right)\] và \[\overrightarrow v  = \overrightarrow {MA}  - \overrightarrow {MB}  = \left( { - 6; - 2} \right)\].

b) Ta có \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{ - 2 + 4}}{2} = 1\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{1 + 3}}{2} = 2\end{array} \right. \Rightarrow I\left( {1;2} \right) \Rightarrow \overrightarrow {OI}  = \left( {1;2} \right)\).

Hai vectơ \(\overrightarrow u \) và \(\overrightarrow {OI} \) cùng phương \( \Leftrightarrow \overrightarrow u  = k\overrightarrow {OI} ,\,\,\,k \in \mathbb{R},k \ne 0\)

\( \Leftrightarrow \left\{ \begin{array}{l}2 - 2x = k.1\\4 - 2y = k.2\end{array} \right. \Rightarrow 4 - 2y = 2\left( {2 - 2x} \right) \Leftrightarrow y = 2x\)

Vậy tập hợp các điểm \(M\) là đường thẳng \[\left( d \right):{\rm{ }}y = 2x\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Số cách sắp xếp ba hành khách ngồi theo hướng tàu chạy là \[A_4^3.\]

Số cách sắp xếp hai hành khách ngồi ngược hướng tàu chạy là \[A_4^2.\]

Số cách sắp xếp ba hành khách còn lại là \[3!.\]

Vậy cách xếp chỗ để thỏa mãn các yêu cầu của hành khách là \[A_4^3.A_4^2.3! = 1728\] cách.

Câu 2

A. \[{d_1}\] và \({d_2}\) song song với nhau;   

B. \[{d_1}\] và \({d_2}\) trùng nhau;                

C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;        

D. \[{d_1}\] và \({d_2}\) vuông góc với nhau.

Lời giải

Đáp án đúng là: C

Đường thẳng \({d_1}:2x + 3y - 19 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 22 + 2t\\y = 55 + 5t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( {2;\,\,5} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {5;\, - 2} \right)\).

Ta thấy \(\frac{2}{5} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 2.5 + 3.\left( { - 2} \right) = 4 \ne 0\).

Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.

Câu 3

A. \[\left( {9;14} \right)\];                                
B. \[\left( {13;18} \right)\];  
C. \[\left( {17;22} \right)\];                     
D. \[\left( {21;26} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 99;                        
B. 50;                            
C. 20;                         
D. 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong mặt phẳng tọa độ \(Oxy\), cho vectơ \(\overrightarrow a  =  - 2\overrightarrow i  + 4\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là

A. \(\left( { - 1;\,\,2} \right)\);                           
B. \(\left( { - 2;4} \right)\);   
C. \(\left( {2;\,4} \right)\);                     
D. \(\left( { - 2; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP