Cho hypebol \(\frac{{{x^2}}}{{20}} - \frac{{{y^2}}}{{16}} = 1\;\left( H \right)\).
Cho hypebol \(\frac{{{x^2}}}{{20}} - \frac{{{y^2}}}{{16}} = 1\;\left( H \right)\).
a) Điểm \(M\left( {\sqrt {20} ;4} \right) \in \left( H \right)\).
b) Tiêu cự của hypebol bằng 6.
c) Các tiêu điểm của hypebol là \({F_1}\left( { - 6;0} \right);{F_2}\left( {6;0} \right)\).
Quảng cáo
Trả lời:
Lời giải
a) Thay tọa độ điểm \(M\) vào phương trình hypebol ta được \[\frac{{{{\left( {\sqrt {20} } \right)}^2}}}{{20}} - \frac{{{4^2}}}{{16}} = 1\;\] (vô lí).
Suy ra \(M\left( {\sqrt {20} ;4} \right) \notin \left( H \right)\).
b) Tiêu cự hypebol \(2c = 2\sqrt {20 + 16} = 12\).
c) Các tiêu điểm của hypebol là \({F_1}\left( { - 6;0} \right);{F_2}\left( {6;0} \right)\).
d) Thay \(x = 8;y = b\) vào phương trình \(\left( H \right)\) thì \(\frac{{64}}{{20}} - \frac{{{b^2}}}{{16}} = 1 \Rightarrow b = \frac{{4\sqrt {55} }}{5}\) hoặc \(b = - \frac{{4\sqrt {55} }}{5}\).
Mà \(b < 0\) nên \(A\left( {8;\frac{{ - 4\sqrt {55} }}{5}} \right)\).
Vậy \(A{F_1} = \sqrt {{{\left( { - 6 - 8} \right)}^2} + {{\left( {\frac{{4\sqrt {55} }}{5}} \right)}^2}} = \frac{{34\sqrt 5 }}{5}\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Theo đề ta có \(\left\{ \begin{array}{l}{F_1}{F_2} = 2c = 6\\M{F_1} + M{F_2} = 2a = 10\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}c = 3\\a = 5\end{array} \right.\)\( \Rightarrow b = \sqrt {{a^2} - {c^2}} = \sqrt {25 - 9} = 4\).
Vậy phương trình \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\).
Gọi hình chữ nhật nội tiếp elip có tọa độ các đỉnh lần lượt là \(\left( {x;y} \right);\left( {x; - y} \right);\left( { - x;y} \right);\left( { - x; - y} \right)\) với \(x,y > 0\).
Khi đó diện tích hình chữ nhật là \(S = 2x \cdot 2y = 4xy\).
Vì \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1 \Rightarrow y = 4\sqrt {1 - \frac{{{x^2}}}{{25}}} \). Do đó \(S = 16x\sqrt {1 - \frac{{{x^2}}}{{25}}} \)\( = \frac{{16}}{5}\sqrt {{x^2}\left( {25 - {x^2}} \right)} \).
Ta có \(\sqrt {{x^2}\left( {25 - {x^2}} \right)} \le \frac{{{x^2} + 25 - {x^2}}}{2} = \frac{{25}}{2}\) (Áp dụng bất đẳng thức Côsi).
Do đó \(S \le \frac{{16}}{5} \cdot \frac{{25}}{2} = 40\).
Vậy diện tích lớn nhất của hình chữ nhật dùng để trồng hoa là 40 m2.
Trả lời: 40.
Câu 2
Lời giải
Lời giải
Phương trình của đường tròn có tâm \(I\left( {1;2} \right)\) và có bán kính \(R = 5\) là \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\). Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Đường thẳng \({\Delta _2}\) cắt trục tung tại điểm \(M\). Đường thẳng \(d\) đi qua \(M\) và vuông góc với \({\Delta _1}\) có phương trình là \( - x + y - \frac{5}{2} = 0\).
b) Hai đường thẳng \({\Delta _1},{\Delta _2}\) cắt nhau tại điểm có hoành độ bằng \( - 7\).
c) Khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \({\Delta _1}\) bằng 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
