Từ các chữ số \[1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6\] có thể lập được bao nhiêu số tự nhiên lẻ có \(6\) chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số cần tìm
Ta có \({a_6} \in \left\{ {1;\,3;\,5} \right\}\) và \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5} + {a_6}} \right) = 1\)
Với \({a_6} = 1\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 2\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;3;6} \right\}\\{a_4};\,{a_5} \in \left\{ {4;\,5} \right\}\end{array} \right.\)
hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,4;\,5} \right\}\\{a_4};\,{a_5} \in \left\{ {3;\,6} \right\}\end{array} \right.\)
Với \({a_6} = 3\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 4\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,4;\,5} \right\}\\{a_4};\,{a_5} \in \left\{ {1;\,6} \right\}\end{array} \right.\)
hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {1;\,4;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {2;\,5} \right\}\end{array} \right.\)
Với \({a_6} = 5\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 6\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,3;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {1;\,4} \right\}\end{array} \right.\)
hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {1;\,4;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {2;\,3} \right\}\end{array} \right.\)
Mỗi trường hợp có \(3!.2! = 12\) số thỏa mãn yêu cầu
Vậy có tất cả \(6.12 = 72\) số cần tìm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).
\( \Rightarrow \overrightarrow {HI} = \frac{3}{2}\overrightarrow {HG} \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).
Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).
Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)
\( \Rightarrow IM:2x - y + 1 = 0\)
\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y = - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).
Lại có: \(\overrightarrow {MA} = 3\overrightarrow {MG} \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\) .
Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).
Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Dễ thấy \(f\left( x \right) = - {x^2} + 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = - 1;\,{x_2} = 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;5} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {5; + \infty } \right)\).
Vậy đáp án đúng là A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho đường thẳng \[{d_1}:2x + 3y + 15 = 0\] và \[{d_2}:x - 2y - 3 = 0\]. Khẳng định nào sau đây đúng?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
