CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Gọi \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số cần tìm

Ta có \({a_6} \in \left\{ {1;\,3;\,5} \right\}\) và \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5} + {a_6}} \right) = 1\)

Với \({a_6} = 1\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 2\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;3;6} \right\}\\{a_4};\,{a_5} \in \left\{ {4;\,5} \right\}\end{array} \right.\)

hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,4;\,5} \right\}\\{a_4};\,{a_5} \in \left\{ {3;\,6} \right\}\end{array} \right.\)

Với \({a_6} = 3\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 4\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,4;\,5} \right\}\\{a_4};\,{a_5} \in \left\{ {1;\,6} \right\}\end{array} \right.\)

hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {1;\,4;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {2;\,5} \right\}\end{array} \right.\)

Với \({a_6} = 5\) thì \(\left( {{a_1} + {a_2} + {a_3}} \right) - \left( {{a_4} + {a_5}} \right) = 6\) \( \Rightarrow \left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {2;\,3;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {1;\,4} \right\}\end{array} \right.\)

hoặc \(\left\{ \begin{array}{l}{a_1};\,{a_2};\,{a_3} \in \left\{ {1;\,4;\,6} \right\}\\{a_4};\,{a_5} \in \left\{ {2;\,3} \right\}\end{array} \right.\)

Mỗi trường hợp có \(3!.2! = 12\) số thỏa mãn yêu cầu

Vậy có tất cả \(6.12 = 72\) số cần tìm.

Câu 3

A. \(\left( { - 3;\,2} \right)\);   
B. \(\left( {1;\,4} \right)\);
C. \(\left[ { - 3;\,2} \right]\); 
D. \(\left[ {1;\,4} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];

B. \[243{x^5} + 405{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\];

C. \[243{x^5} - 1620{x^4} + 4320{x^3} - 5760{x^2} + 3840x - 1024\];

D. \[243{x^5} + 1620{x^4} + 4320{x^3} + 5760{x^2} + 3840x + 1024\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP