Tìm hệ số của \({x^2}\) trong khai triển : \({\left( {{x^3} + \frac{1}{{{x^2}}}} \right)^n}\), với \(x > 0\) , biết: \(C_n^0 + C_n^1 + C_n^2 = 11\).
Tìm hệ số của \({x^2}\) trong khai triển : \({\left( {{x^3} + \frac{1}{{{x^2}}}} \right)^n}\), với \(x > 0\) , biết: \(C_n^0 + C_n^1 + C_n^2 = 11\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có : \(C_n^0 + C_n^1 + C_n^2 = 11 \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = 11\,\,\left( {n \ge 2} \right)\)
\( \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)}}{2} = 11\) \( \Leftrightarrow \left[ \begin{array}{l}n = 4\\n = - 5\end{array} \right.\) .
Do đó có \(n = 4\) thỏa mãn điều kiện.
Khi đó:
\({\left( {{x^3} + \frac{1}{{{x^2}}}} \right)^4} = {\left( {{x^3}} \right)^4} + 4.{\left( {{x^3}} \right)^3}.\frac{1}{{{x^2}}} + 6.{\left( {{x^3}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 4.{x^3}.{\left( {\frac{1}{{{x^2}}}} \right)^3} + {\left( {\frac{1}{{{x^2}}}} \right)^4}\)
\( = {x^{12}} + 4{x^7} + 6{x^2} + \frac{4}{{{x^2}}} + \frac{1}{{{x^8}}}\).
Vậy hệ số của \({x^2}\) trong khai triển là: \(6\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Dễ thấy \(f\left( x \right) = - {x^2} - 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} = - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).
Vậy đáp án đúng là D.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì Parabol có bề lõm quay xuống dưới nên \(a < 0\). Do đó đáp án C và D sai.
Xét đáp án A: Gọi \(I\) là đỉnh của Parabol ta có:
\({x_I} = - \frac{b}{{2a}} = - \frac{2}{{2.\left( { - 1} \right)}} = 1;\,{y_I} = - {1^2} + 2.1 - 3 = - 2\). Suy ra đỉnh \(I\left( {1; - 2} \right)\). Do đó đáp án A sai.
Xét đáp án B: Gọi \(I\) là đỉnh của Parabol ta có:
\({x_I} = - \frac{b}{{2a}} = - \frac{4}{{2.\left( { - 1} \right)}} = 2;\,{y_I} = - {2^2} + 4.2 - 3 = 1\). Suy ra đỉnh \(I\left( {2;1} \right)\).
Đồ thị hàm số này có trục đối xứng \(x = 2\). Giao điểm của đồ thị với trục tung là \(A\left( {0; - 3} \right)\). Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình \( - {x^2} + 4x - 3 = 0\) tức là \(x = 1\) và \(x = 3\).
Suy ra đáp án B đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y - 4 = 0\);
B. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
C. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
