Cho đa giác đều \(2018\) đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn \(100^\circ \)?
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \({A_1};{A_2};...;{A_{2018}}\) là các đỉnh của đa giác đều \(2018\) đỉnh.
Gọi \(O\) là đường tròn ngoại tiếp đa giác đều \({A_1};{A_2};...;{A_{2018}}\)
Các đỉnh của đa giác đều chia \(O\) thành \(2018\) cung tròn bằng nhau, mỗi cung tròn có số đo bằng \(\frac{{360^\circ }}{{2018}}\).
Vì tam giác cần đếm có đỉnh là đỉnh của đa giác nên các góc của tam giác là các góc nội tiếp của \(O\).
Suy ra góc lớn hơn \(100^\circ \) sẽ chắn cung có số đo lớn hơn \(200^\circ \).
Cố định một đỉnh \({A_i}\), có \(2018\) cách chọn \({A_i}\).
Gọi\({A_i};{A_j};{A_k}\)là các đỉnh sắp thứ tự theo chiều kim đồng hồ sao cho \[\widehat {{A_i}{A_j}{A_k}} > 100^\circ \] và tam giác \({A_i}{A_j}{A_k}\) là tam giác cần đếm.
Khi đó cung \({A_i}{A_k}\) là hợp liên tiếp của nhiều nhất \(\left( {\frac{{160}}{{\frac{{360}}{{2018}}}}} \right) = 896\) cung tròn nói trên.
Ta có \(896\) cung tròn này có \(897\) đỉnh. Trừ đi đỉnh \({A_i}\) thì còn \(896\) đỉnh. Do đó có \(C_{896}^2\) cách chọn hai đỉnh \({A_j};{A_k}\).
Vậy có tất cả \(2018.C_{896}^2\) tam giác thỏa mãn yêu cầu bài toán.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi số cần tìm có dạng \[\overline {abcd} \] với \[\left( {a,b,c,d} \right) \in A = \left\{ {0;1;2;3;4;5} \right\}\]
Vì \[\overline {abcd} \] là số chẵn \[ \Rightarrow \,\,d = \left\{ {0;2;4} \right\}\]
Trường hợp 1: Nếu \[d = 0\]có một cách chọn
\[a\] có \(5\) cách chọn (vì \(a\) được chọn từ một trong các số \(1;2;3;4;5\)).
\[b\] có \(4\) cách chọn (vì \(a \ne b\) nên \(b\) được chọn từ một trong các số \(1;2;3;4;5\) nhưng bỏ đi số mà \(a\) đã chọn).
\[c\] có \(3\) cách chọn (vì \(a \ne c;\,b \ne c\) nên \(c\) được chọn từ một trong các số \(1;2;3;4;5\) nhưng bỏ đi số mà \(a,b\) đã chọn).
Như vậy, ta có \[5.4.3.1 = 60\] số.
Truờng hợp 2: Nếu \[d \ne 0\] có \[2\] cách chọn là số \(2\) hoặc \(4\)
\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong các số \(1;2;3;4;5\) bỏ đi số mà \(d\) đã chọn).
\[b\] có \(4\) cách chọn (vì \(a \ne b;b \ne d\) nên \(b\) được chọn từ một trong các số \(0;1;2;3;4;5\) nhưng bỏ đi số mà \(a,d\) đã chọn).
\[c\] có \(3\) cách chọn (vì \(a \ne c;\,b \ne c;d \ne c\) nên \(c\) được chọn từ một trong các số \(0;1;2;3;4;5\) nhưng bỏ đi số mà \(a,b,d\) đã chọn).
Như vậy, ta có \[2.4.4.3 = 96\] số.
Vậy có tất cả \[60 + 96 = 156\] số cần tìm.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta thức \(f\left( x \right) = {x^2} - 4x + 4\) có \(\Delta = 0,\,a = 1 > 0\) nên \(f\left( x \right)\) có nghiệm duy nhất \(x = 2\)Do đó ta có bảng xét dấu \(f\left( x \right)\):
Do đó tập nghiệm \(S\) của bất phương trình là: \(S = \mathbb{R}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.