Một Parabol \(\left( P \right):{y^2} = 2px\left( {p > 0} \right)\) có phương trình đường chuẩn là \(x + 1 = 0\). Giá trị của \(p\) bằng
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đường chuẩn của Parabol là: \(x + 1 = 0\) \( \Rightarrow \frac{p}{2} = 1 \Leftrightarrow p = 2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Số các hoán vị về màu bi khi xếp thành dãy là: \[3!\];
Số cách xếp \[3\] viên bi đen khác nhau thành dãy là: \[3!\];
Số cách xếp \[4\] viên bi đỏ khác nhau thành dãy là \[4!\];
Số cách xếp \[5\] viên bi xanh khác nhau thành dãy là \[5!\];
Vậy nên số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là \[3!.3!.4!.5! = 103\,\,680\] cách.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số xác định khi \[\left\{ \begin{array}{l}6 - x \ge 0\\x - 1 \ge 0\\1 + \sqrt {x - 1} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 6\\x \ge 1\end{array} \right. \Leftrightarrow 1 \le x \le 6\]
Vậy tập xác định của hàm số là \[D = \left[ {1;\,6} \right]\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.