Cho Elip \[\left( E \right):9{x^2} + 16{y^2} = 144\;\], với \[M\] là điểm thuộc elip biết \[\widehat {{F_1}M{F_2}} = 60^\circ \]. Tính \[M{F_1}.M{F_2}\]?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có: \[9{x^2} + 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\].
Khi đó \[a = 4;\,b = 3;\,c = \sqrt 7 \Rightarrow \left\{ \begin{array}{l}{F_1}\left( { - \sqrt 7 ;\,0} \right)\\{F_2} = \left( {\sqrt 7 ;\,0} \right)\\{F_1}{F_2} = 2c = 2\sqrt 7 \\M{F_1} + M{F_2} = 8\end{array} \right.\]
Áp dụng định lí cosin trong tam giác \[M{F_1}{F_2}\] ta có:
\[{F_1}{F_2}^2 = M{F_1}^2 + M{F_2}^2 - 2M{F_1}.{\rm{ }}M{F_2}.cos\widehat {{F_1}M{F_2}}\]
\[ \Leftrightarrow 28 = M{F_1}^2 + M{F_2}^2 - 2M{F_1}.M{F_2}.cos60^\circ \]
\[ \Leftrightarrow \;28 = M{F_1}^2 + M{F_2}^2 - M{F_1}.M{F_2}\]
\[ \Leftrightarrow M{F_1}^2 + M{F_2}^2 + 2M{F_1}.M{F_{2\;}} - 3M{F_1}.M{F_2} = 28\]
\[ \Leftrightarrow {\left( {M{F_1} + M{F_2}} \right)^{2\;}} - 3M{F_1}.M{F_2} = 28\]
\[ \Leftrightarrow 64 - 3M{F_1}.M{F_2} = 28\]
\[ \Leftrightarrow M{F_1}.M{F_2} = 12\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
+) Với \[m = 0\;\] thì \[f\left( x \right) = - x - 1\] lấy cả giá trị âm và dương (ví dụ \[f\left( { - 2} \right) = 1\]) nên \[m = 0\;\] không thỏa mãn yêu cầu bài toán.
+) Với \[m \ne 0\] thì \[f\left( x \right) = m{x^2} - x - 1\] là tam thức bậc hai, do đó:
\[f\left( x \right) < 0,\,\forall x \Leftrightarrow \left\{ \begin{array}{l}a = m < 0\\\Delta = 1 + 4m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m < \frac{{ - 1}}{4}\end{array} \right. \Leftrightarrow m < - \frac{1}{4}\].
Vậy với \[m < - \frac{1}{4}\] thì biểu thức \[f\left( x \right)\] luôn nhận giá trị âm.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số xác định khi \[\left\{ \begin{array}{l}6 - x \ge 0\\x - 1 \ge 0\\1 + \sqrt {x - 1} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 6\\x \ge 1\end{array} \right. \Leftrightarrow 1 \le x \le 6\]
Vậy tập xác định của hàm số là \[D = \left[ {1;\,6} \right]\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.