Câu hỏi:

02/01/2026 32 Lưu

Số hạng chứa \[{x^2}\] trong khai triển \[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}}\] với \[x \ne 0\], biết \[n\] là số nguyên dương thỏa mãn \[3C_{n + 1}^2 + n{P_2} = 4A_n^2\].

A. \[4{x^2}\];  
B. \[4\]; 
C. \[6{x^2}\]; 
D. \[4.\frac{1}{{{x^2}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Từ phương trình:

\[3C_{n + 1}^2 + n{P_2} = 4A_n^2\]

\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right)!}}{{2\left( {n - 1} \right)!}} + 2n = 4.\frac{{n!}}{{\left( {n - 2} \right)!}}\]

\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right).n.\left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}} + 4n = 8.\frac{{n.\left( {n - 1} \right).\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}\]

\[ \Leftrightarrow 3n.\left( {n + 1} \right) + 4n = 8n.\left( {n - 1} \right)\]

\[ \Leftrightarrow 5{n^2} - 15n = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}n = 0\\n = 3\left( {tmdk} \right)\end{array} \right.\]

Với \[n = 3\], ta có:

 \[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}} = {\left( {\frac{1}{x} + {x^3}} \right)^4}\]

\[ = {\left( {\frac{1}{x}} \right)^4} + 4x{\left( {\frac{1}{x}} \right)^3} + 6{x^2}{\left( {\frac{1}{x}} \right)^2} + 4{x^3}\left( {\frac{1}{x}} \right) + {x^4}\]

\[ = \frac{1}{{{x^4}}} + 4.\frac{1}{{{x^2}}} + 6 + 4{x^2} + {x^4}\].

Vậy số hạng chứa \[{x^2}\] là: \[4{x^2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Số các hoán vị về màu bi khi xếp thành dãy là: \[3!\];

Số cách xếp \[3\] viên bi đen khác nhau thành dãy là: \[3!\];

Số cách xếp \[4\] viên bi đỏ khác nhau thành dãy là \[4!\];

Số cách xếp \[5\] viên bi xanh khác nhau thành dãy là \[5!\];

Vậy nên số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là \[3!.3!.4!.5! = 103\,\,680\] cách.

Câu 2

A. \[D = \left( {1;\, + \infty } \right)\]; 
B. \[D = \left( {1;\,6} \right)\];  
C. \[D = \left[ {1;\,6} \right]\]; 
D. \[D = \mathbb{R}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Hàm số xác định khi \[\left\{ \begin{array}{l}6 - x \ge 0\\x - 1 \ge 0\\1 + \sqrt {x - 1}  \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 6\\x \ge 1\end{array} \right. \Leftrightarrow 1 \le x \le 6\]

Vậy tập xác định của hàm số là \[D = \left[ {1;\,6} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[x \in \left( { - 2;\, - 1} \right) \cup \left( {3;4} \right)\];   
B. \[x \in \left( { - \infty ;\, - 2} \right) \cup \left( {4;\, + \infty } \right)\];
C. \[x \in \left( { - \infty ;\, - 1} \right) \cup \left( {3;\, + \infty } \right)\]; 
D. \[x \in \left( { - 1;\,3} \right) \cup \left( {4;\, + \infty } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[0 < m < \frac{1}{4}\]; 
B. \[\frac{{ - 1}}{4} < m < 0\];
C. \[\frac{{ - 1}}{4} < m \le 0\]; 
D. \[m <  - \frac{1}{4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP